首页> 外文期刊>Expert systems with applications >Computational intelligence approaches and linear models in case studies of forecasting exchange rates
【24h】

Computational intelligence approaches and linear models in case studies of forecasting exchange rates

机译:预测汇率案例研究中的计算智能方法和线性模型

获取原文
获取原文并翻译 | 示例

摘要

Artificial neural networks and fuzzy systems, have gradually established themselves as a popular tool in approximating complicated nonlinear systems and time series forecasting. This paper investigates the hypothesis that the nonlinear mathematical models of multilayer perceptron and radial basis function neural networks and the Takagi-Sugeno (TS) fuzzy system are able to provide a more accurate out-of-sample forecast than the traditional auto regressive moving average (ARMA) and ARMA generalized auto regressive conditional heteroskedasticity (ARMA-GARCH) linear models. Using series of Brazilian exchange rate (R$/US$) returns with 15 min, 60 min and 120 min, daily and weekly basis, the one-step-ahead forecast performance is compared. Results indicate that forecast performance is strongly related to the series' frequency and the forecasting evaluation shows that nonlinear models perform better than their linear counterparts. In the trade strategy based on forecasts, nonlinear models achieve higher returns when compared to a buy-and-hold strategy and to the linear models.
机译:人工神经网络和模糊系统已逐渐将自己确立为一种用于逼近复杂非线性系统和时间序列预测的流行工具。本文研究了以下假设,即多层感知器和径向基函数神经网络的非线性数学模型以及Takagi-Sugeno(TS)模糊系统能够提供比传统自回归移动平均值更准确的样本外预测( ARMA)和ARMA广义自回归条件异方差(ARMA-GARCH)线性模型。使用每天和每周分别有15分钟,60分钟和120分钟的一系列巴西汇率(R $ / US $)回报,比较了一步一步的预测效果。结果表明,预测性能与序列频率密切相关,预测评估表明,非线性模型的性能优于线性模型。在基于预测的交易策略中,与购买和持有策略以及线性模型相比,非线性模型可获得更高的回报。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号