首页> 外文学位 >Effect of Material Ion Exchanges on the Mechanical Stiffness Properties and Shear Deformation of Hydrated Cement Material Chemistry Structure C-S-H Jennite -- A Computational Modeling Study.
【24h】

Effect of Material Ion Exchanges on the Mechanical Stiffness Properties and Shear Deformation of Hydrated Cement Material Chemistry Structure C-S-H Jennite -- A Computational Modeling Study.

机译:材料离子交换对水合水泥材料化学结构C-S-H珍妮特机械刚度性能和剪切变形的影响-计算模型研究。

获取原文
获取原文并翻译 | 示例

摘要

Material properties and performance are governed by material molecular chemistry structures and molecular level interactions. Methods to understand relationships between the material properties and performance and their correlation to the molecular level chemistry and morphology, and thus find ways of manipulating and adjusting matters at the atomistic level in order to improve material performance, are required. A computational material modeling methodology is investigated and demonstrated for a key cement hydrated component material chemistry structure of Calcium-Silicate-Hydrate (C-S-H) Jennite in this work.;The effect of material ion exchanges on the mechanical stiffness properties and shear deformation behavior of hydrated cement material chemistry structure of Calcium Silicate Hydrate (C-S-H) Jennite was studied. Calcium ions were replaced with Magnesium ions in Jennite structure of the C-S-H gel. Different level of substitution of the ions was used. The traditional Jennite structure was obtained from the American Mineralogist Crystal Structure Database and super cells of the structures were created using a Molecular Dynamics Analyzer and Visualizer Material Studio. Molecular dynamics parameters used in the modeling analysis were determined by carrying out initial dynamic studies. 64 unit cell of C-S-H Jennite was used in material modeling analysis studies based on convergence results obtained from the elastic modulus and total energies. NVT forcite dynamics using COMPASS force field based on 200 ps dynamics time was used to determine mechanical modulus of the traditional C-S-H gel and the Magnesium ion modified structures. NVT Discover dynamics using COMPASS forcefield was used in the material modeling studies to investigate the influence of ionic exchange on the shear deformation of the associated material chemistry structures. A prior established quasi-static deformation method to emulate shear deformation of C-S-H material chemistry structure that is based on a triclinic crystal structure was used, by deforming the triclinic crystal structure at 0.2 degree per time step for 75 steps of deformation.;It was observed that there is a decrease in the total energies of the systems as the percentage of magnesium ion increases in the C-S-H Jennite molecular structure systems. Investigation of effect of ion exchange on the elastic modulus shows that the elastic stiffness modulus tends to decrease as the amount of Mg in the systems increases, using either COMPASS or universal force field. On the other hand, shear moduli obtained after deforming the structures computed from the stress-strain curve obtained from material modeling increases as the amount of Mg increases in the system. The present investigations also showed that ultimate shear stress obtained from predicted shear stress---strain also increases with amount of Mg in the chemistry structure. Present study clearly demonstrates that computational material modeling following molecular dynamics analysis methodology is an effective way to predict and understand the effective material chemistry and additive changes on the stiffness and deformation characteristics in cementitious materials, and the results suggest that this method can be extended to other materials.
机译:材料特性和性能受材料分子化学结构和分子水平相互作用的控制。需要一种方法来理解材料特性和性能之间的关系以及它们与分子水平的化学和形态之间的关系,从而找到在原子水平上操纵和调节物质以改善材料性能的方法。研究了一种计算材料建模方法,并证明了该技术对水合硅酸钙(CSH)珍妮特水泥关键水合组分材料化学结构的影响;;材料离子交换对水合力学刚度特性和剪切变形行为的影响研究了水合硅酸钙(CSH)水英石的水泥材料化学结构。在C-S-H凝胶的Jennite结构中,钙离子被镁离子替代。使用了不同水平的离子取代。传统的Jennite结构是从American Mineralogist晶体结构数据库中获得的,并使用分子动力学分析仪和Visualizer Material Studio创建了该结构的超级单元。通过进行初始动力学研究,确定了用于建模分析的分子动力学参数。基于从弹性模量和总能量获得的收敛结果,在材料建模分析研究中使用了64单位的C-S-H珍妮特晶胞。使用基于200 ps动力学时间的COMPASS力场的NVT强力动力学来确定传统C-S-H凝胶和镁离子改性结构的机械模量。使用COMPASS力场的NVT Discover动力学用于材料建模研究中,以研究离子交换对相关材料化学结构的剪切变形的影响。使用先前建立的拟静态变形方法来模拟基于三斜晶晶体结构的CSH材料化学结构的剪切变形,方法是将三斜晶晶体结构在每时间步长0.2度下变形75步。随着CSH Jennite分子结构系统中镁离子百分比的增加,系统的总能量减少。离子交换对弹性模量影响的研究表明,使用COMPASS或通用力场,随着系统中Mg的增加,弹性刚度模量趋于降低。另一方面,随着系统中Mg的增加,根据材料建模获得的应力-应变曲线计算出的结构发生变形后获得的剪切模量也随之增加。目前的研究还表明,从预测的剪切应力-应变获得的极限剪切应力也随着化学结构中Mg的增加而增加。本研究清楚地表明,遵循分子动力学分析方法的计算材料建模是预测和理解水泥质材料中有效材料化学和添加剂变化对刚度和变形特性的有效方法,结果表明该方法可以扩展到其他方法。材料。

著录项

  • 作者

    Adebiyi, Babatunde Mattew.;

  • 作者单位

    North Carolina Agricultural and Technical State University.;

  • 授予单位 North Carolina Agricultural and Technical State University.;
  • 学科 Nanotechnology.;Engineering Computer.;Engineering Materials Science.
  • 学位 M.S.
  • 年度 2014
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号