首页> 外文OA文献 >Invariant mechanical properties of calcium-silicate-hydrates (C-H-S) in cement-based materials : instrumented nanoindentation and microporomechanical modeling
【2h】

Invariant mechanical properties of calcium-silicate-hydrates (C-H-S) in cement-based materials : instrumented nanoindentation and microporomechanical modeling

机译:水泥基材料中硅酸钙 - 水合物(C-H-s)的不变机械性能:仪器化纳米压痕和微机械建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Random porous solids such as bone and geomaterials exhibit a multiphase composite nature, characterized by water-filled pores of nm- to m-scale diameter. The natural synthesis and operating environments of such materials significantly alters phase composition and multiscale structural heterogeneities throughout the material lifetime, defining significant changes in macroscopic mechanical performance for applications ranging from multispan bridges to calcium-phosphate bone replacement cements. However, the nanoscale phases formed within the unique chemical environment of pores cannot be recapitulated ex situ in bulk form, and imaging of the composite microstructure is obfuscated by the size, environmental fragility, and nonconductive nature of such geomaterials and natural composites. Thus, there is an increasing drive to develop new approaches to image, quantify the mechanical contributions of, and understand the chemomechanical coupling of distinct phases in such composites. In this thesis, we utilize recent advances in experimentation namely instrumented indentation, and micromechanical modeling namely homogenization techniques, in an attempt to quantify the mutli-phase, multi-scale heterogeneity observed in all cement-based materials. We report a systematic framework for mechanically enabled imaging, measuring and modeling of structural evolution for cement based materials (CBM), porous geocomposites, at length scales on the order of constituent phase diameters (10-8 - 10-6 m), and thus identify two structurally distinct but compositionally similar phases heretofore hypothesized to exist.
机译:诸如骨头和土工材料之类的无规多孔固体表现出多相复合性质,其特征是直径为纳米级到微米级的充水孔。此类材料的自然合成和操作环境会在整个材料寿命期内显着改变相组成和多尺度结构异质性,从而在宏观机械性能方面发生了重大变化,适用于从多跨桥到磷酸钙骨替代水泥的各种应用。然而,在孔隙的独特化学环境中形成的纳米级相不能以散装形式异位重现,并且复合微结构的成像由于这种土工材料和天然复合材料的尺寸,环境脆弱性和非导电性质而变得模糊。因此,越来越需要开发新的方法来成像,量化这种复合材料中不同相的机械作用以及理解不同相的化学机械耦合。在本文中,我们利用实验的最新进展(即仪器压痕技术)和微机械建模(即均质技术),以量化在所有水泥基材料中观察到的多相,多尺度异质性。我们报告了一个系统化的框架,用于机械化成像,测量和建模水泥基材料(CBM),多孔土工复合材料的结构演化,其长度尺度为相相直径(10-8-10-6 m)的数量级,因此确定迄今假设存在的两个结构不同但组成相似的相。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号