首页> 外文期刊>Expert systems with applications >VCR: Virtual community recommender using the technology acceptance model and the user's needs type
【24h】

VCR: Virtual community recommender using the technology acceptance model and the user's needs type

机译:VCR:使用技术接受模型和用户需求类型的虚拟社区推荐器

获取原文
获取原文并翻译 | 示例

摘要

A recommender system is a kind of automated and sophisticated decision support system that is needed to provide a personalized solution in a brief form without going through a complicated search process. There have been a substantial number of studies to make recommender systems more accurate and efficient, however, most of them have a common critical limitation - these systems are used as virtual salespeople, rather than as marketing tools. A crucial reason for this phenomenon is that the models suggested by prior studies only focus on a user's behavioral outcomes without consideration of the embedded procedure. In this study, we propose a novel recommender system based on user's behavioral model. Our proposed system, labeled VCR—virtual community recommender, recommends optimal virtual communities for an active user by case-based reasoning (CBR) using behavioral factors suggested in the technology acceptance model (TAM) and its extended models. In addition, it refines its recommendation results by considering the user's needs type at the point of usage. To test the usefulness of our recommendation model, we conducted two-step validation-empirical validation for the collected data set, and practical validation to investigate the actual satisfaction level of users. Experimental results showed that our model outperformed all comparative models from the perspective of user satisfaction.
机译:推荐系统是一种自动化且复杂的决策支持系统,需要它以简短的形式提供个性化解决方案,而无需经过复杂的搜索过程。为了使推荐系统更加准确和高效,已经进行了大量研究,但是,其中大多数都有共同的关键限制-这些系统用作虚拟销售人员,而不是营销工具。造成这种现象的一个关键原因是,先前研究建议的模型仅关注用户的行为结果,而没有考虑嵌入式过程。在这项研究中,我们提出了一种基于用户行为模型的新型推荐系统。我们提出的名为VCR(虚拟社区推荐器)的系统使用技术接受模型(TAM)及其扩展模型中建议的行为因素,通过基于案例的推理(CBR)为活动用户推荐最佳虚拟社区。另外,它通过在使用时考虑用户的需求类型来完善其推荐结果。为了测试推荐模型的有效性,我们对收集的数据集进行了两步验证(经验验证),并进行了实际验证以调查用户的实际满意度。实验结果表明,从用户满意度的角度来看,我们的模型优于所有比较模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号