首页> 外文期刊>Expert systems with applications >A hybrid approach for feature subset selection using neural networks and ant colony optimization
【24h】

A hybrid approach for feature subset selection using neural networks and ant colony optimization

机译:神经网络和蚁群优化的混合特征子集选择方法

获取原文
获取原文并翻译 | 示例

摘要

One of the significant research problems in multivariate analysis is the selection of a subset of input variables that can predict the desired output with an acceptable level of accuracy. This goal is attained through the elimination of the variables that produce noise or, are strictly correlated with other already selected variables. Feature subset selection (selection of the input variables) is important in correlation analysis and in the field of classification and modeling. This paper presents a hybrid method based on ant colony optimization and artificial neural networks (ANNs) to address feature selection. The proposed hybrid model is demonstrated using data sets from the domain of medical diagnosis, yielding promising results.
机译:多变量分析中的重大研究问题之一是选择输入变量的子集,这些子集可以以可接受的精度水平预测所需的输出。通过消除产生噪声的变量或与其他已经选择的变量严格相关的变量,可以实现此目标。特征子集选择(输入变量的选择)在相关分析以及分类和建模领域中很重要。本文提出了一种基于蚁群优化和人工神经网络(ANN)的混合方法来解决特征选择问题。使用来自医学诊断领域的数据集证明了提出的混合模型,产生了可喜的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号