首页> 外文期刊>Expert systems with applications >Pattern recognition in time series database: A case study on financial database
【24h】

Pattern recognition in time series database: A case study on financial database

机译:时间序列数据库中的模式识别:以金融数据库为例

获取原文
获取原文并翻译 | 示例

摘要

Today, there are more and more time series data that coexist with other data. These data exist in useful and understandable patterns. Data management of time series data must take into account an integrated approach. However, many researches face numeric data attributes. Therefore, the need for time series data mining tool has become extremely important. The purpose of this paper is to provide a novel pattern in mining architecture with mixed attributes that uses a systematic approach in the financial database information mining. Time series pattern mining (TSPM) architecture combines the extended visualization-induced self-organizing map algorithm and the extended Naive Bayesian algorithm. This mining architecture can simulate human intelligence and discover patterns automatically. The TSPM approach also demonstrates good returns in pattern research.
机译:如今,越来越多的时间序列数据与其他数据共存。这些数据以有用且易于理解的模式存在。时间序列数据的数据管理必须考虑一种集成方法。但是,许多研究面对数值数据属性。因此,对时序数据挖掘工具的需求变得极为重要。本文的目的是提供一种具有混合属性的挖掘架构的新颖模式,该模式在财务数据库信息挖掘中使用系统方法。时间序列模式挖掘(TSPM)架构结合了扩展的可视化诱导的自组织映射算法和扩展的朴素贝叶斯算法。这种挖掘架构可以模拟人类智能并自动发现模式。 TSPM方法还证明了模式研究的良好回报。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号