首页> 外文期刊>Expert systems with applications >Design of BOM configuration for reducing spare parts logistic costs
【24h】

Design of BOM configuration for reducing spare parts logistic costs

机译:BOM配置设计,以减少备件物流成本

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an approach to reduce the total operational cost of a spare part logistic system by appropriately designing the BOM (bill of material) configuration. A spare part may have several vendors. Parts supplied by different vendors may vary in failure rates and prices - the higher the failure rate, the lower the price. Selecting vendors for spare parts is therefore a trade-off decision. Consider a machine where the BOM is composed of s critical parts and each part has k vendors. The number of possible BOM configurations for the machine is then k~s. For each BOM configuration, we can use OPUS10 (proprietary software) to calculate an optimum inventory policy and its associated total logistic cost. Exhaustively searching the solution space by OPUS10 can yield an optimal BOM configuration; however, it may be formidably time-consuming. To remedy the time-consuming problem, this research proposes a GA-neural network approach to solve the BOM configuration design problem. A neural network is developed to efficiently emulate the function of OPUS10 and a GA (genetic algorithm) is developed to quickly find a near-optimal BOM configuration. Experiment results indicate that the approach can obtain an effective BOM configuration efficiently.
机译:本文提出了一种通过适当设计BOM(物料清单)配置来降低备件物流系统总运营成本的方法。备件可能有多个供应商。不同供应商提供的零件的故障率和价格可能会有所不同-故障率越高,价格越低。因此,选择备件供应商是一个权衡的决定。考虑一台BOM由关键零件组成并且每个零件都有k个供应商的机器。机器可能的BOM配置数量为k〜s。对于每种BOM配置,我们可以使用OPUS10(专有软件)来计算最佳库存策略及其相关的总物流成本。用OPUS10穷举搜索解决方案空间可以产生最佳的BOM配置。但是,这可能会非常耗时。为了解决耗时的问题,本研究提出了一种GA神经网络方法来解决BOM配置设计问题。开发了神经网络以有效模拟OPUS10的功能,并开发了GA(遗传算法)以快速找到接近最佳的BOM配置。实验结果表明,该方法可以有效地获得有效的BOM配置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号