首页> 外文期刊>Expert systems with applications >A simulated-annealing-based approach for simultaneous parameter optimization and feature selection of back-propagation networks
【24h】

A simulated-annealing-based approach for simultaneous parameter optimization and feature selection of back-propagation networks

机译:一种基于模拟退火的反向传播网络参数同时优化和特征选择方法

获取原文
获取原文并翻译 | 示例

摘要

The back-propagation network (BPN) can be used in various fields. Nevertheless, different problems may require different parameter settings for network architectures. Rule of thumb or "trial and error" methods are usually used to determine them. However, these methods may lead worse parameter settings for network architectures. On the other hand, although a dataset may contain many features, not all features are beneficial for classification in BPN. Therefore, a simulated-annealing-based approach, denoted as SA + BPN, is proposed to obtain the optimal parameter settings for network architectures of BPN, and to select the beneficial subset of features which result in a better classification. In order to evaluate the proposed SA + BPN approach, datasets in UCI Machine Learning Repository are used to evaluate the performance of the proposed approach. The experimental results show that the parameter settings for network architectures obtained by the proposed approach are better than those of other approaches. When the feature selection is taken into consideration, the classification accuracy rates of most datasets are increased. Therefore, the developed approach can be utilized to find out the optimal parameter settings for network architectures of BPN, and discover the useful features effectively.
机译:反向传播网络(BPN)可以用于各种领域。但是,不同的问题可能需要针对网络体系结构进行不同的参数设置。通常使用经验法则或“试错法”来确定它们。但是,这些方法可能导致网络体系结构的参数设置更糟。另一方面,尽管数据集可能包含许多特征,但并非所有特征都有助于BPN中的分类。因此,提出了一种基于模拟退火的方法,称为SA + BPN,以获取BPN网络体系结构的最佳参数设置,并选择有益的特征子集,从而实现更好的分类。为了评估提出的SA + BPN方法,使用UCI机器学习存储库中的数据集来评估提出的方法的性能。实验结果表明,该方法获得的网络体系结构参数设置优于其他方法。当考虑特征选择时,大多数数据集的分类准确率都会提高。因此,所开发的方法可以用于找出BPN网络体系结构的最佳参数设置,并有效地发现有用的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号