首页> 外文期刊>Expert systems with applications >Multi-level fuzzy mining with multiple minimum supports
【24h】

Multi-level fuzzy mining with multiple minimum supports

机译:具有多个最小支持的多层次模糊挖掘

获取原文
获取原文并翻译 | 示例

摘要

Finding association rules in transaction databases is most commonly seen in data mining. In real applications, different items may have different support criteria to judge their importance, taxonomic relationships among items may appear, and data may have quantitative values. This paper thus proposes a fuzzy multiple-level mining algorithm for extracting knowledge implicit in quantitative transactions with multiple minimum supports of items. Items may have different minimum supports and the maximum-itemset minimum-taxonomy support constraint is adopted to discover the large itemsets. Under the constraint, the characteristic of downward-closure is kept, such that the original apriori algorithm can be easily extended to find fuzzy large itemsets. The proposed algorithm adopts a top-down progressively deepening approach to derive large itemsets. It can also discover cross-level fuzzy association rules under the maximum-itemset minimum-taxonomy support constraint. An example is also given to demonstrate that the proposed mining algorithm can derive the multiple-level association rules under multiple item supports in a simple and effective way.
机译:在数据挖掘中最常见的是在事务数据库中查找关联规则。在实际应用中,不同的项目可能具有不同的支持标准来判断其重要性,可能会出现项目之间的分类关系,并且数据可能具有定量值。因此,本文提出了一种模糊多级挖掘算法,用于提取具有多个项目最小支持的定量交易中隐含的知识。项目可能具有不同的最小支持,因此采用最大项目集最小分类支持约束来发现大型项目集。在这种约束下,保持了向下封闭的特性,从而可以很容易地扩展原始的先验算法以找到模糊的大项目集。所提出的算法采用自顶向下的逐步加深方法来导出大项目集。它还可以在最大项目集最小分类支持约束下发现跨级别的模糊关联规则。给出了一个实例,证明了所提算法能够以简单有效的方式导出多项目支持下的多级关联规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号