首页> 外文期刊>Soft Computing - A Fusion of Foundations, Methodologies and Applications >Genetic-fuzzy mining with multiple minimum supports based on fuzzy clustering
【24h】

Genetic-fuzzy mining with multiple minimum supports based on fuzzy clustering

机译:基于模糊聚类的最小支持度遗传模糊挖掘

获取原文
获取原文并翻译 | 示例

摘要

Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. Most of the previous approaches set a single minimum support threshold for all the items and identify the relationships among transactions using binary values. In real applications, different items may have different criteria to judge their importance. In the past, we proposed an algorithm for extracting appropriate multiple minimum support values, membership functions and fuzzy association rules from quantitative transactions. It used requirement satisfaction and suitability of membership functions to evaluate fitness values of chromosomes. The calculation for requirement satisfaction might take a lot of time, especially when the database to be scanned could not be totally fed into main memory. In this paper, an enhanced approach, called the fuzzy cluster-based genetic-fuzzy mining approach for items with multiple minimum supports (FCGFMMS), is thus proposed to speed up the evaluation process and keep nearly the same quality of solutions as the previous one. It divides the chromosomes in a population into several clusters by the fuzzy k-means clustering approach and evaluates each individual according to both their cluster and their own information. Experimental results also show the effectiveness and the efficiency of the proposed approach.
机译:数据挖掘是为特定目的从现有数据库中提取所需知识或有趣模式的过程。大多数以前的方法都为所有项目设置了一个最小支持阈值,并使用二进制值识别交易之间的关系。在实际应用中,不同的项目可能具有不同的标准来判断其重要性。过去,我们提出了一种从定量交易中提取适当的多个最小支持值,隶属函数和模糊关联规则的算法。它使用需求满意度和隶属函数的适用性来评估染色体的适应度值。需求满足的计算可能要花费很多时间,尤其是当要扫描的数据库无法完全馈入主内存时。因此,本文提出了一种增强的方法,称为基于模糊聚类的遗传模糊挖掘方法,用于具有多个最小支持的项目(FCGFMMS),以加快评估过程并保持与上一个方法几乎相同的解决方案质量。 。它通过模糊k均值聚类方法将种群中的染色体分为几个簇,并根据其簇和自身信息对每个个体进行评估。实验结果还表明了该方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号