首页> 外文期刊>Expert Systems with Application >Multiple instance learning for histopathological breast cancer image classification
【24h】

Multiple instance learning for histopathological breast cancer image classification

机译:组织病理学乳腺癌图像分类的多实例学习

获取原文
获取原文并翻译 | 示例

摘要

Histopathological images are the gold standard for breast cancer diagnosis. During examination several dozens of them are acquired for a single patient. Conventional, image-based classification systems make the assumption that all the patient's images have the same label as the patient, which is rarely verified in practice since labeling the data is expensive. We propose a weakly supervised learning framework and investigate the relevance of Multiple Instance Learning (MIL) for computer-aided diagnosis of breast cancer patients, based on the analysis of histopathological images. Multiple instance learning consists in organizing instances (images) into bags (patients), without the need to label all the instances. We compare several state-of-the-art MIL methods including the pioneering ones (APR, Diverse Density, MI-SVM, citation-kNN), and more recent ones such as a non parametric method and a deep learning based approach (MIL-CNN). The experiments are conducted on the public BreaKHis dataset which contains about 8000 microscopic biopsy images of benign and malignant breast tumors, originating from 82 patients. Among the MIL methods the non-parametric approach has the best overall results, and in some cases allows to obtain classification rates never reached by conventional (single instance) classification frameworks. The comparison between MIL and single instance classification reveals the relevance of the MIL paradigm for the task at hand. In particular, the MIL allows to obtain comparable or better results than conventional (single instance) classification without the need to label all the images. (C) 2018 Elsevier Ltd. All rights reserved.
机译:组织病理学图像是诊断乳腺癌的金标准。在检查过程中,单个患者需要获取几十个。常规的基于图像的分类系统假设所有患者的图像都具有与患者相同的标签,这在实践中很少得到验证,因为标记数据非常昂贵。我们提出了一个弱监督的学习框架,并基于组织病理学图像分析研究了多实例学习(MIL)与计算机辅助诊断乳腺癌患者的相关性。多实例学习包括将实例(图像)组织到袋子(患者)中,而无需标记所有实例。我们比较了几种最先进的MIL方法,包括开创性方法(APR,多样密度,MI-SVM,引文kNN)以及最新方法,例如非参数方法和基于深度学习的方法(MIL- CNN)。实验是在公开的BreaKHis数据集上进行的,该数据集包含约8000例来自82位患者的良性和恶性乳腺肿瘤的显微活检图像。在MIL方法中,非参数方法具有最佳的总体效果,并且在某些情况下允许获得常规(单实例)分类框架从未达到的分类率。 MIL和单实例分类之间的比较揭示了MIL范例与手头任务的相关性。特别是,MIL允许获得与常规(单实例)分类相比可比或更好的结果,而无需标记所有图像。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号