首页> 外文期刊>Expert Systems with Application >On learning guarantees to unsupervised concept drift detection on data streams
【24h】

On learning guarantees to unsupervised concept drift detection on data streams

机译:关于学习保证对数据流进行无监督的概念漂移检测

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the Statistical Learning Theory (SLT), which provides a theoretical framework to ensure when supervised learning algorithms generalize input data, this manuscript relies on the Algorithmic Stability framework to prove learning bounds for the unsupervised concept drift detection on data streams. Based on such proof, we also designed the Plover algorithm to detect drifts using different measure functions, such as Statistical Moments and the Power Spectrum. In this way, the criterion for issuing data changes can also be adapted to better address the target task. From synthetic and real-world scenarios, we observed that each data stream may require a different measure function to identify concept drifts, according to the underlying characteristics of the corresponding application domain. In addition, we discussed about the differences of our approach against others from literature, and showed illustrative results confirming the usefulness of our proposal. (C) 2018 Elsevier Ltd. All rights reserved.
机译:受统计学习理论(SLT)的启发,该理论提供了一个理论框架来确保监督学习算法何时对输入数据进行泛化,该手稿依赖于算法稳定性框架来证明对数据流进行非监督概念漂移检测的学习范围。基于这样的证明,我们还设计了Plover算法,以使用不同的测量函数(例如统计矩和功率谱)检测漂移。这样,发布数据更改的标准也可以进行调整,以更好地解决目标任务。从综合和现实情况中,我们观察到,根据相应应用程序域的基础特征,每个数据流可能需要不同的度量功能来识别概念漂移。此外,我们讨论了我们的方法与文献中其他方法的区别,并显示了说明性结果,证实了我们建议的有效性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号