首页> 外文期刊>Expert Systems with Application >Unsupervised learning approach to estimating user engagement with mobile applications: A case study of The Weather Company (IBM)
【24h】

Unsupervised learning approach to estimating user engagement with mobile applications: A case study of The Weather Company (IBM)

机译:评估用户与移动应用程序互动的无监督学习方法:The Weather Company(IBM)的案例研究

获取原文
获取原文并翻译 | 示例

摘要

User engagement (UE) is the quality of user experience that emphasizes any positive aspects of interaction with an application, and particularly the phenomena associated with being captivated by certain features included in it, thus being motivated to use it. In the context of mobile applications, measuring UE could provide insights to further explain usage behaviors, allowing developers, and product managers, to gain a better understanding of how users utilize their applications, and what drives their engagement with them. Numerous methods have been proposed in literature to measure UE in domains such as online services; however, not much had been done to model UE in the context of mobile applications. In response to this problem, our study proposes to measure UE with mobile applications by analyzing temporal changes in a defined set of usage metrics, yielding a general metric, a mobile application user engagement (MAUE) score, which is a linear combination of the UE time series metrics, accounting for the largest amount of the variance in usage data, and extracted by principal component analysis (PCA). Our proposed approach has been applied to the behavioral data of 40,004 unique users of The Weather Company mobile application. Our results indicate that time-dependent fluctuations of the MAUE score are characterized with a power-law decrease, in accordance with the power law of practice, suggesting different levels of UE stability for the different mobile platforms (i.e., IOS, Android). Additionally, the Multidimensional scaling distance between clusters of variables loadings, and among the variables loadings within each cluster with regards to the amount of usage days, could be used to map the UE motivations and thus provide product managers an improved understanding and prediction ability of the influence of different app updates and product interventions on UE. (C) 2018 Elsevier Ltd. All rights reserved.
机译:用户参与(UE)是强调与应用程序交互的任何积极方面的用户体验质量,尤其是与被其所包含的某些功能所吸引,从而被激励使用它有关的现象。在移动应用程序的上下文中,测量UE可以提供见解以进一步解释使用行为,从而使开发人员和产品经理可以更好地了解用户如何利用其应用程序以及推动他们与应用程序互动的因素。文献中已经提出了许多方法来测量诸如在线服务等领域中的UE。但是,在移动应用程序上下文中对UE进行建模的工作还很少。针对此问题,我们的研究建议通过分析一组定义的使用指标中的时间变化来测量带有移动应用程序的UE,得出一个通用指标,即移动应用程序用户参与度(MAUE)得分,这是UE的线性组合时间序列指标,占使用数据中最大的方差,并通过主成分分析(PCA)提取。我们提出的方法已应用于The Weather Company移动应用程序的40,004个唯一用户的行为数据。我们的结果表明,根据实践的幂定律,MAUE分数随时间的波动具有幂定律降低的特征,这表明不同移动平台(即IOS,Android)的UE稳定性水平不同。另外,关于变量使用量的集群之间以及每个集群内的变量使用之间关于使用天数的多维缩放距离,可以用于映射UE动机,从而为产品经理提供对用户动机的更好的理解和预测能力。不同应用程序更新和产品干预对UE的影响。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号