首页> 外文期刊>Expert Systems with Application >Daily long-term traffic flow forecasting based on a deep neural network
【24h】

Daily long-term traffic flow forecasting based on a deep neural network

机译:基于深度神经网络的每日长期交通流量预测

获取原文
获取原文并翻译 | 示例

摘要

Daily traffic flow forecasting is critical in advanced traffic management and can improve the efficiency of fixed-time signal control. This paper presents a traffic prediction method for one whole day using a deep neural network based on historical traffic flow data and contextual factor data. The main idea is that traffic flow within a short time period is strongly correlated with the starting and ending time points of the period together with a number of other contextual factors, such as day of week, weather, and season. Therefore, the relationship between the traffic flow values within a given time interval and a combination of contextual factors can be mined from historical data. First, a predictor was trained using a multi-layer supervised learning algorithm to mine the potential relationship between traffic flow data and a combination of key contextual factors. To reduce training times, a batch training method was proposed. Finally, a Seattle-based case study shows that, overall, the proposed method outperforms the conventional traffic prediction method in terms of prediction accuracy. (C) 2018 Elsevier Ltd. All rights reserved.
机译:每日交通流量预测对于高级交通管理至关重要,并且可以提高固定时间信号控制的效率。本文提出了一种基于历史流量数据和上下文因素数据的深度神经网络全天流量预测方法。主要思想是,短时间段内的流量与该时间段的开始和结束时间点以及许多其他上下文因素(例如星期几,天气和季节)密切相关。因此,可以从历史数据中提取给定时间间隔内的交通流量值与上下文因素的组合之间的关系。首先,使用多层监督学习算法对预测变量进行训练,以挖掘交通流量数据与关键上下文因素组合之间的潜在关系。为了减少训练时间,提出了一种分批训练的方法。最后,基于西雅图的案例研究表明,总体而言,该方法在预测准确性方面优于传统的交通量预测方法。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2019年第5期|304-312|共9页
  • 作者单位

    Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xianning Rd 28, Xian 710049, Peoples R China|Changan Univ, Sch Informat Engn, Middle Sect South 2nd Ring Rd, Xian 710064, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xianning Rd 28, Xian 710049, Peoples R China;

    Zhejiang Univ, Inst Marine Informat Sci & Technol, Yuhangtang Rd 866, Hangzhou 310058, Zhejiang, Peoples R China;

    Zhejiang Univ, Inst Marine Informat Sci & Technol, Yuhangtang Rd 866, Hangzhou 310058, Zhejiang, Peoples R China;

    Univ Washington, Dept Civil & Environm Engn, More 201, Seattle, WA 98105 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Daily long-term traffic flow; Forecasting; Deep neural network; Contextual factor; Batch training;

    机译:每日长期交通流量;预测;深度神经网络;情境因素;分批培训;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号