首页> 外文期刊>Expert Systems with Application >Tracking objects within a smart home
【24h】

Tracking objects within a smart home

机译:跟踪智能家居中的对象

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel indoor tracking system built with common data mining techniques on radio frequency identification (RFID) tags readings. The system allows tracking of several objects in real-time in a smart home context and is a building block toward the deployment of an expert system to enable aging in place through technology. The indoor localization is modelled as a classification problem, instead of a regression problem as commonly seen in the literature. The paper is divided in two parts. The first one focuses on the ground truth collection that led to the model construction. The second part focuses on the filters that were designed to enable this model to be used in real-time in the smart home as a tracking software. Results from the first part show that most classifiers perform well on the static positioning of RFID tags task, with a random forest of 100 trees performing best at 97% accuracy and 0.9740974 F-Measure. However, collecting data to train the classifier is a long and tedious process. Results from the second part indicate that the accuracy of the random forest drops significantly when confronted with human interference. With the help of some filters, the tracking accuracy of objects can still be as high as 75%. Those results confirm that using passive RFID tags for an indoor tracking system is viable. Our system is easy to deploy and more flexible than trilateration or fingerprinting systems. (C) 2018 Elsevier Ltd. All rights reserved.
机译:本文介绍了一种新型的室内跟踪系统,该系统使用射频识别(RFID)标签读数的常用数据挖掘技术构建。该系统允许在智能家居环境中实时跟踪多个对象,并且是部署专家系统以通过技术实现老化的基础。室内定位被建模为分类问题,而不是文献中常见的回归问题。本文分为两部分。第一个重点是导致模型构建的地面真相收集。第二部分重点介绍了旨在使该模型作为跟踪软件在智能家居中实时使用的过滤器。第一部分的结果表明,大多数分类器在RFID标签任务的静态定位上表现良好,其中100棵树的随机林以97%的精度和0.9740974 F-Measure的性能最佳。但是,收集数据来训练分类器是一个漫长而乏味的过程。第二部分的结果表明,随机森林的准确性在受到人为干扰时会大大下降。借助某些过滤器,对象的跟踪精度仍可以高达75%。这些结果证实了将无源RFID标签用于室内跟踪系统是可行的。与三边测量或指纹识别系统相比,我们的系统易于部署并且更加灵活。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号