首页> 外文期刊>Journal of Real-Time Image Processing >SmartSORT: an MLP-based method for tracking multiple objects in real-time
【24h】

SmartSORT: an MLP-based method for tracking multiple objects in real-time

机译:SmartSort:基于MLP的方法,用于实时跟踪多个对象

获取原文
获取原文并翻译 | 示例

摘要

With the recent advances in the object detection research field, tracking-by-detection has become the leading paradigm adopted by multi-object tracking algorithms. By extracting different features from detected objects, those algorithms can estimate the similarities and association patterns of objects along with successive frames. However, since similarity functions applied by tracking algorithms are handcrafted, it is difficult to use them in new contexts. In this study, it is investigated the use of artificial neural networks to learning a similarity function that can be used among detections. During training, multilayer perceptron (MLP) neural networks were introduced to correct and incorrect association patterns, sampled from a pedestrian tracking data set. For such, different motion and appearance feature combinations have been explored. Finally, a trained MLP has been inserted into a multiple-object tracking framework, which has been assessed on the MOT Challenge benchmark. Throughout the experiments, the proposed tracker matched the results obtained by state-of-the-art methods by scoring a tracking accuracy of 60.4%, while running 58% faster than DeepSORT, a recent and similar method used as a baseline. After all, this work demonstrates its method can be automatically trained for different tracking contexts and it has highly competitive cost-effectiveness for online real-time tracking applications.
机译:随着最近对象检测研究领域的进步,跟踪逐个检测已成为多目标跟踪算法采用的前导范式。通过从检测到的对象中提取不同的特征,这些算法可以估计与连续帧一起的对象的相似性和关联模式。然而,由于手工制作了跟踪算法应用的相似性功能,因此很难在新上下文中使用它们。在本研究中,研究人工神经网络以学习可以在检测中使用的相似性功能。在培训期间,引入多层的Perceptron(MLP)神经网络以纠正和不正确的关联模式,从行人跟踪数据集中采样。对于这样的,已经探讨了不同的运动和外观特征组合。最后,已将培训的MLP插入到多目标跟踪框架中,这些框架已经在MOT挑战基准上进行评估。在整个实验中,该拟议的跟踪器通过缩小了60.4%的跟踪精度,匹配了通过最先进的方法获得的结果,同时运行比Deadsort更快的58%,最近和类似的方法用作基线。毕竟,这项工作展示了它的方法可以自动培训,以针对不同的跟踪上下文训练,并且在线实时跟踪应用程序具有高竞争性成本效益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号