首页> 外文期刊>Expert systems with applications >Improving Network Traffic Analysis By Foreseeing Data-packet-flow With Hybrid Fuzzy-based Model Prediction
【24h】

Improving Network Traffic Analysis By Foreseeing Data-packet-flow With Hybrid Fuzzy-based Model Prediction

机译:通过基于混合模糊的模型预测来预测数据包流,从而改善网络流量分析

获取原文
获取原文并翻译 | 示例

摘要

Forecast of the flow of data packets on a computer network gives valuable information about the change of data-packet-flow to the website at the next upcoming period, which is a way to enhance the capability of network traffic analysis. Thousands of web-smart businesses depend on network traffic analysis to improve network conversions, reduce marketing costs, facilitate network optimization, speed-up network monitoring and provide a higher level of service to their customers and partners. In this study, an intelligent-based hybrid model prediction is introduced for foreseeing data-packet-flow on a network. This is to combine adaptive neuro-fuzzy inference system (ANFIS) with nonlinear generalized autoregres-sive conditional heteroscedasticity (NGARCH), tuned optimally by adaptive support vector regression (ASVR). The hybrid model is chosen for resolving the problems of the overshoot and volatility clustering simultaneously so as to improve the predictive accuracy and we denote it as ASVR-ANFIS/NGARCH in this paper. Once we start on the scheme of foreseeing data-packet-flow on a network, the throughput ratio of foreseeing and non-foreseeing data-packet-flow is increased roughly up to 20%. We thereby drew the conclusion that the proposed scheme above can aid webmaster to improve network bandwidth allocation effectively and efficiently and then help web analytics to optimize their website, maximize online marketing conversions, and lead campaign tracking.
机译:对计算机网络上数据包流的预测可以在下一个即将到来的时期提供有关数据包流向网站的变化的有价值的信息,这是增强网络流量分析能力的一种方式。数以千计的网络智能企业依靠网络流量分析来改善网络转换,降低营销成本,促进网络优化,加快网络监控并为其客户和合作伙伴提供更高水平的服务。在这项研究中,引入了一种基于智能的混合模型预测,以预测网络上的数据包流。这是将自适应神经模糊推理系统(ANFIS)与非线性广义自回归条件异方差性(NGARCH)相结合,并通过自适应支持向量回归(ASVR)对其进行了优化。选择混合模型来同时解决过冲和波动性聚类问题,以提高预测精度,在本文中将其称为ASVR-ANFIS / NGARCH。一旦我们开始在网络上预见数据包流的方案,可预见的和非预见的数据包流的吞吐率将大约增加20%。因此,我们得出的结论是,以上提出的方案可以帮助网站站长有效和高效地改善网络带宽分配,然后帮助网站分析优化其网站,最大化在线营销转化并领导活动跟踪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号