首页> 外文期刊>Journal of information and computational science >Modeling and Prediction of Network Traffic Based on Hybrid Covariance Function Gaussian Regressive
【24h】

Modeling and Prediction of Network Traffic Based on Hybrid Covariance Function Gaussian Regressive

机译:基于混合协方差函数高斯回归的网络流量建模与预测

获取原文
获取原文并翻译 | 示例

摘要

In order to obtain better predict results of the network traffic, this paper proposes a novel network traffic prediction model based on hybrid covariance function Gauss Process (GP). Firstly, GP model is built by using hybrid covariance function, and then the network training set is input to GP model for training to find the optimal parameter of covariance and mean function, finally, network traffic prediction model is established, and one-step and multi-step network traffic prediction test are carried out to test the performance compared with support vector machine, the neural network, and the traditional Gauss process. The results show that, compared with the contrast model, the proposed mode can describe the change trends of network traffic, and improve the prediction accuracy of network traffic, so it is an effective prediction method for complex network traffic.
机译:为了获得更好的网络流量预测结果,本文提出了一种基于混合协方差函数高斯过程(GP)的网络流量预测模型。首先,使用混合协方差函数建立GP模型,然后将网络训练集输入GP模型进行训练,以找到协方差和均值函数的最佳参数,最后,建立网络流量预测模型,并一步一步地与支持向量机,神经网络和传统的高斯过程相比,进行了多步网络流量预测测试以测试性能。结果表明,与对比模型相比,该模型可以描述网络流量的变化趋势,提高了网络流量的预测精度,是一种有效的复杂网络流量预测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号