首页> 外文期刊>Expert systems with applications >Improved Zhang neural network model and its solution of time-varying generalized linear matrix equations
【24h】

Improved Zhang neural network model and its solution of time-varying generalized linear matrix equations

机译:改进的Zhang神经网络模型及其时变广义线性矩阵方程的求解

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a class of Zhang neural networks (ZNNs) are developed and analyzed on convergence properties. Different from conventional gradient-based neural networks (GNNs), such ZNN is designed based on the idea of measuring the time-derivation information of time-varying coefficients. The general framework of such a ZNN, together with its variant forms, is presented and investigated. The resultant ZNN model activated by linear functions possesses global exponential convergence to the time-varying equilibrium point. By employing proposed new smooth nonlinear odd-monotonically increasing activation functions, superior convergence could be achieved. Computer-simulation examples substantiate the efficacy of such a ZNN model in the context of solution of time-varying generalized linear matrix equations.
机译:本文开发了一类张神经网络(ZNN),并对其收敛性进行了分析。与传统的基于梯度的神经网络(GNN)不同,这种ZNN是基于测量时变系数的时间导数信息的思想而设计的。提出并研究了这种ZNN的一般框架及其变体形式。线性函数激活的最终ZNN模型具有时变平衡点的全局指数收敛性。通过采用提出的新的光滑非线性奇单调增加的激活函数,可以实现优异的收敛性。计算机仿真示例在时变广义线性矩阵方程的求解范围内证实了这种ZNN模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号