首页> 外文期刊>Neurocomputing >Zhang neural network versus gradient-based neural network for time-varying linear matrix equation solving
【24h】

Zhang neural network versus gradient-based neural network for time-varying linear matrix equation solving

机译:张神经网络与基于梯度的神经网络的时变线性矩阵方程求解

获取原文
获取原文并翻译 | 示例

摘要

A type of recurrent neural networks called Zhang neural network (ZNN) is presented and investigated to provide an online solution to the time-varying linear matrix equation, A(t)X(t)B(r)+X(t) = C(t) by using a novel design method. In contrast to the gradient-based neural network (GNN), the novel design of ZNN is based on a matrix-valued indefinite error function, instead of a scalar-valued norm-based energy function. Therefore, a ZNN model depicted in implicit dynamics can globally and exponentially converge to the time-varying theoretical solution of the given linear matrix equation. Computer simulation results further demonstrate the superior performance of the ZNN model in solving the time-varying linear matrix equation compared with the conventional GNN model.
机译:提出并研究了一种称为张神经网络(ZNN)的递归神经网络,以为时变线性矩阵方程A(t)X(t)B(r)+ X(t)= C提供在线解决方案(t)使用新颖的设计方法。与基于梯度的神经网络(GNN)相比,ZNN的新颖设计基于矩阵值的不确定误差函数,而不是基于标量值的范数能量函数。因此,以隐式动力学描述的ZNN模型可以全局和指数收敛于给定线性矩阵方程的时变理论解。计算机仿真结果进一步证明,与传统的GNN模型相比,ZNN模型在求解时变线性矩阵方程方面具有优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号