首页> 外文期刊>Expert systems with applications >Effective page recommendation algorithms based on distributed learning automata and weighted association rules
【24h】

Effective page recommendation algorithms based on distributed learning automata and weighted association rules

机译:基于分布式学习自动机和加权关联规则的有效页面推荐算法

获取原文
获取原文并翻译 | 示例

摘要

Different efforts have been done to address the problem of information overload on the Internet. Recom-mender systems aim at directing users through this information space, toward the resources that best meet their needs and interests by extracting knowledge from the previous users' interactions. In this paper, we propose three algorithms to solve the web page recommendation problem. In our first algorithm, we use distributed learning automata to learn the behavior of previous users' and recommend pages to the current user based on learned patterns. By introducing a novel weighted association rule mining algorithm, we present our second algorithm for recommendation purpose. Also, a novel method is proposed to pure the current session window. One of the challenging problems in recommendation systems is dealing with unvisited or newly added pages. By considering this problem and improving the efficiency of first two algorithms we present a hybrid algorithm based on distributed learning automata and proposed weighted association rule mining algorithm. In the hybrid algorithm we employ the HITS algorithm to extend the recommendation set. Our experiments on real data set show that the hybrid algorithm performs better than the other algorithms we compared to and, at the same time, it is less complex than other proposed algorithms with respect to memory usage and computational cost too.
机译:为了解决Internet上信息过载的问题,已经做出了不同的努力。推荐系统旨在通过从先前用户的交互中提取知识,将用户引导通过此信息空间,以最能满足其需求和兴趣的资源。在本文中,我们提出了三种算法来解决网页推荐问题。在我们的第一个算法中,我们使用分布式学习自动机来学习先前用户的行为,并根据学习到的模式向当前用户推荐页面。通过介绍一种新颖的加权关联规则挖掘算法,我们提出了用于推荐目的的第二种算法。此外,提出了一种新颖的方法来净化当前会话窗口。推荐系统中具有挑战性的问题之一是处理未访问或新添加的页面。通过考虑这一问题并提高前两种算法的效率,我们提出了一种基于分布式学习自动机的混合算法,并提出了加权关联规则挖掘算法。在混合算法中,我们采用HITS算法来扩展推荐集。我们在真实数据集上的实验表明,混合算法的性能优于我们与之相比的其他算法,同时,就内存使用和计算成本而言,它比其他拟议算法要复杂得多。

著录项

  • 来源
    《Expert systems with applications》 |2010年第2期|1316-1330|共15页
  • 作者

    R. Forsati; M.R. Meybodi;

  • 作者单位

    Department of Computer Engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran;

    Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran School of Computer Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    personalization; machine learning; learning automata; web mining;

    机译:个性化机器学习学习自动机网络挖掘;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号