首页> 外文期刊>Web Intelligence >Research on distributed data stream mining algorithms based on matrix weighted association rules
【24h】

Research on distributed data stream mining algorithms based on matrix weighted association rules

机译:基于矩阵加权关联规则的分布式数据流挖掘算法研究

获取原文
获取原文并翻译 | 示例

摘要

In order to overcome the low efficiency of traditional data mining algorithms without considering weighted association rules, this paper proposes a distributed data flow mining algorithm based on matrix weighted association rules. According to the way of separating metadata and data flow, garbage data processing in data flow is realized. By using sliding window and data summary structure to optimize PCA algorithm, the main component decision matrix is formed in the window, and the dimension of data in sliding window is reduced by using the decision matrix. The matrix weighted association rules are used to mine the distributed data. After dimensionality reduction, the transactions in the database are clustered according to the time distribution. The weighted analysis is carried out for each aggregation to obtain the weighted frequent item set with time and output the mining results. The experimental results show that the proposed algorithm has high efficiency and the highest accuracy of 98.9%.
机译:为了克服传统数据挖掘算法的低效率而不考虑加权关联规则,提出了一种基于矩阵加权关联规则的分布式数据流挖掘算法。根据分离元数据和数据流的方式,实现了数据流中的垃圾数据处理。通过使用滑动窗口和数据汇总结构来优化PCA算法,主要组件判定矩阵形成在窗口中,并且通过使用判定矩阵减少了滑动窗口中的数据的维度。矩阵加权关联规则用于挖掘分布式数据。减少维度后,数据库中的事务根据时间分布群集。对每个聚合进行加权分析,以获得随时间设置的加权频繁项目并输出挖掘结果。实验结果表明,该算法的效率高,最高精度为98.9%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号