首页> 外文期刊>Expert Systems with Application >Improved framework for particle swarm optimization: Swarm intelligence with diversity-guided random walking
【24h】

Improved framework for particle swarm optimization: Swarm intelligence with diversity-guided random walking

机译:改进的粒子群优化框架:具有多样性指导的随机游走的群智能

获取原文
获取原文并翻译 | 示例

摘要

The work and contribution of this study is not only to devise an improved PSO framework that is capable of wider search area and better fitness values, but also to realize a system that possesses the particle swarm intelligence via high diversity preserving and individual random walking. The purpose of this study is to interpret the processes of how to approach this framework, which consists of bilateral objec tive function (BOF) and random walking swarm intelligence (RW-PSO), and to provide the distinction from the current problems of PSO technique. Hence, this paper will present the ability of particles escap ing from local optimum can be greatly improved because of the increase of exploration stage and scope and the global optimum can be obtained easily with the hybrid of BOF and RWS1, which may involve in searching for the solution from a more complicated test function. Subsequently, the results revealed the advantages of the proposed framework for improving the particle swarm optimization: (a) preserving the simple spirit of the conventional PSO; (b) achieving effective solutions for benchmark functions effi ciently; (c) increasing no additional parameters to gain fitness improvement. Moreover, the superiority of the proposed framework has also been demonstrated the results via seven test functions defined to simulate some of complicated real-world problems and the better performance according to the exper imental results with several benchmark functions.
机译:这项研究的工作和贡献不仅在于设计一种改进的PSO框架,该框架能够扩大搜索范围并提供更好的适应性值,而且还可以实现一种通过高多样性保留和个体随机行走而拥有粒子群智能的系统。这项研究的目的是解释如何处理由双边目标功能(BOF)和随机步行群智能(RW-PSO)组成的该框架的过程,并提供与当前PSO技术问题的区别。因此,本文将提出由于探索阶段和范围的增加,可以大大提高粒子逃避局部最优的能力,而BOF和RWS1的混合可以很容易地获得全局最优,这可能涉及寻找来自更复杂的测试功能的解决方案。随后,结果揭示了所提出的改进粒子群优化框架的优点:(a)保留了传统PSO的简单精神; (b)有效地实现基准功能的有效解决方案; (c)不增加其他参数来提高适应性。此外,所提出的框架的优越性还通过七个测试函数证明了结果,这些测试函数定义为根据一些基准函数的实验结果来模拟一些复杂的现实世界问题以及更好的性能。

著录项

  • 来源
    《Expert Systems with Application》 |2011年第10期|p.12214-12220|共7页
  • 作者单位

    Innovative DigiTech-Enabled Applications and Services Institute, Institute for Information Industry, Kaohsiung City, Taiwan, ROC;

    Innovative DigiTech-Enabled Applications and Services Institute, Institute for Information Industry, Kaohsiung City, Taiwan, ROC,Department of Information Management, National Sun Yat-sen University, Kaohsiung City, Taiwan, ROC;

    Innovative DigiTech-Enabled Applications and Services Institute, Institute for Information Industry, Kaohsiung City, Taiwan, ROC;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    particle swarm optimization; swarm intelligence; random walking; bilateral objective function;

    机译:粒子群优化;一群情报;随机行走双边目标函数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号