首页> 外文期刊>Expert systems with applications >A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor
【24h】

A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor

机译:以FWT为预处理器的SVDD模糊分类模拟电路故障诊断方法

获取原文
获取原文并翻译 | 示例

摘要

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, No.29, Yu Dao Road, Nanjing, Jiangsu Province 210016, China;College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, No.29, Yu Dao Road, Nanjing, Jiangsu Province 210016, China;College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, No.29, Yu Dao Road, Nanjing, Jiangsu Province 210016, China;%In this paper, a new approach of fault diagnosis in analog circuits, which employs the Fractional Wavelet Transform (FWT) to extract fault features and adopts a fuzzy multi-classifier based on the Support Vector Data Description (SVDD) to diagnose circuit faults, is proposed. Firstly, a discrete FWT algorithm by the fractional kernel matrix is performed to preprocess fault samples. To obtain the optimal fractional order, two methods trained with the genetic algorithm are introduced. One approach is performed by the best diagnostic result, and the other is based on the maximum among-cluster center distance by the Kernel Fuzzy C-Means (KFCM) algorithm. In this paper, a threshold value is used to decrease the fuzzy region which in the overlap between hyperspheres of SVDD. Then, a SVDD fuzzy multi-classifier is applied to diagnose faults in analog circuit, and fuzzy faults are diagnosed in fuzzy sets by the relative distance. The simulation results show that the FWT succeeds in extracting local fault features and the classifier effectively detects faults.
机译:南京航空航天大学自动化工程学院,江苏省南京市玉道路29号210016;南京航空航天大学自动化工程学院,南京玉道路29号江苏省210016;南京航空航天大学自动化工程学院,江苏省南京市鱼岛路29号210016%本文提出了一种模拟电路故障诊断的新方法,其中提出了一种利用分数小波变换(FWT)提取故障特征,并采用基于支持向量数据描述(SVDD)的模糊多分类器对电路故障进行诊断的方法。首先,通过分数阶核矩阵执行离散FWT算法,对故障样本进行预处理。为了获得最佳分数阶,引入了两种用遗传算法训练的方法。一种方法是通过最佳诊断结果执行的,另一种方法是通过核模糊C均值(KFCM)算法基于最大的簇间中心距离。在本文中,使用阈值来减少SVDD超球之间的重叠中的模糊区域。然后,采用SVDD模糊多分类器对模拟电路进行故障诊断,并通过相对距离对模糊集中的模糊故障进行诊断。仿真结果表明,小波变换能够成功提取局部故障特征,分类器能够有效地检测出故障。

著录项

  • 来源
    《Expert systems with applications》 |2011年第8期|p.10554-10561|共8页
  • 作者

    Hui Luo; Youren Wang; Jiang Cui;

  • 作者单位

    College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, No.29, Yu Dao Road, Nanjing, Jiangsu Province 210016, China;

    College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, No.29, Yu Dao Road, Nanjing, Jiangsu Province 210016, China;

    College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, No.29, Yu Dao Road, Nanjing, Jiangsu Province 210016, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fault diagnosis; Analog circuit; Feature extraction; Fractional wavelet transform; SVDD; KFCM;

    机译:故障诊断;模拟电路特征提取;分数小波变换SVDD;肯德基;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号