首页> 外文期刊>Expert Systems with Application >A two-stage clustering method to analyze customer characteristics to build discriminative customer management: A case of textile manufacturing business
【24h】

A two-stage clustering method to analyze customer characteristics to build discriminative customer management: A case of textile manufacturing business

机译:分两阶段进行聚类分析客户特征以建立区分性客户管理的方法:以纺织制造企业为例

获取原文
获取原文并翻译 | 示例

摘要

In order to obtain comprehensive information about customers, this study aims to use a systematized analytic method to examine customers. This study uses LRFM customer relationship model, which consists of four dimensions: relation length (L), recent transaction time (R), buying frequency (F), and monetary (M), to carry out customer clusters. We proceed with this clustering analysis to classify customers in order to set discriminative marketing strategies. In addition, this study further employed a cross analysis over three predetermined dimensions: area, sales, and new/old characteristics to enhance the clustering analysis. The results obtained from the real textile business show that the customer groups formed using the four-factor (LRFM) clustering all has statistical significant differences, and with meaningful explanations in terms of marketing strategy. Thus, this study considers useful for discriminative customer relationship management.
机译:为了获得有关客户的全面信息,本研究旨在使用系统化的分析方法来检查客户。本研究使用LRFM客户关系模型,该模型包括四个维度:关系长度(L),最近交易时间(R),购买频率(F)和货币(M)来执行客户群。我们继续进行这种聚类分析,以对客户进行分类,以设置有区别的营销策略。此外,本研究还对三个预定维度进行了交叉分析:面积,销售和新/旧特征,以增强聚类分析。从真实的纺织品业务中获得的结果表明,使用四因素(LRFM)聚类形成的客户群在统计上都有显着差异,并且在营销策略方面具有有意义的解释。因此,本研究认为对于区分客户关系管理很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号