首页> 外文期刊>Expert Systems with Application >Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases
【24h】

Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases

机译:使用支持向量机和新型混合特征选择方法诊断红斑鳞状疾病

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we developed a diagnosis model based on support vector machines (SVM) with a novel hybrid feature selection method to diagnose erythemato-squamous diseases. Our proposed hybrid feature selection method, named improved F-score and Sequential Forward Search (IFSFS), combines the advantages of filter and wrapper methods to select the optimal feature subset from the original feature set. In our IFSFS, we improved the original F-score from measuring the discrimination of two sets of real numbers to measuring the discrimination between more than two sets of real numbers. The improved F-score and Sequential Forward Search (SFS) are combined to find the optimal feature subset in the process of feature selection, where, the improved F-score is an evaluation criterion of filter method, and SFS is an evaluation system of wrapper method. The best parameters of kernel function of SVM are found out by grid search technique. Experiments have been conducted on different training-test partitions of the erythemato-squamous diseases dataset taken from UCI (University of California Irvine) machine learning database. Our experimental results show that the proposed SVM-based model with IFSFS achieves 98.61% classification accuracy and contains 21 features. With these results, we conclude our method is very promising compared to the previously reported results.
机译:在本文中,我们开发了一种基于支持向量机(SVM)的诊断模型,该模型具有新颖的混合特征选择方法来诊断红斑鳞状疾病。我们提出的混合特征选择方法,称为改进的F分数和顺序正向搜索(IFSFS),结合了过滤器和包装器方法的优点,可以从原始特征集中选择最佳特征子集。在IFSFS中,我们将原始F分数从测量两组实数的差异改进为测量两组以上实数之间的差异。改进的F分数和顺序前向搜索(SFS)结合起来,在特征选择过程中找到最优的特征子集,其中,改进的F分数是滤波方法的评估标准,SFS是包装器的评估系统。方法。通过网格搜索技术找出支持向量机内核功能的最佳参数。已对取自UCI(加州大学尔湾分校)机器学习数据库的红斑鳞状疾病数据集的不同训练测试分区进行了实验。我们的实验结果表明,提出的基于IFSFS的基于SVM的模型可实现98.61%的分类精度,并包含21个功能。有了这些结果,我们得出结论,与先前报告的结果相比,我们的方法非常有前途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号