首页> 外文期刊>Expert systems with applications >Multiclass support vector machines for diagnosis of erythemato-squamous diseases
【24h】

Multiclass support vector machines for diagnosis of erythemato-squamous diseases

机译:用于诊断红斑鳞状疾病的多类支持向量机

获取原文
获取原文并翻译 | 示例

摘要

A new approach based on the implementation of multiclass support vector machine (SVM) with the error correcting output codes (ECOC) is presented for diagnosis of erythemato-squamous diseases. The recurrent neural network (RNN) and multilayer perceptron neural network (MLPNN) were also tested and benchmarked for their performance on the diagnosis of the erythemato-squamous diseases. The domain contained records of patients with known diagnosis. Given a training set of such records, the classifiers learned how to differentiate a new case in the domain. The classifiers were used to detect the six erythemato-squamous diseases when 34 features defining six disease indications were used as inputs. The purpose is to determine an optimum classification scheme for this problem. The present research demonstrated that the features well represent the erythemato-squamous diseases and the multiclass SVM and RNN trained on these features achieved high classification accuracies.
机译:提出了一种基于带错误校正输出码(ECOC)的多类支持向量机(SVM)实现的新方法,用于诊断红斑鳞状疾病。还对递归神经网络(RNN)和多层感知器神经网络(MLPNN)进行了测试,并对其在红斑鳞状疾病诊断中的性能进行了基准测试。该域包含诊断已知的患者的记录。给定此类记录的训练集,分类器学习了如何区分域中的新案例。当使用定义6种疾病适应症的34个特征作为输入时,使用分类器检测6种红斑鳞状疾病。目的是确定针对此问题的最佳分类方案。目前的研究表明,这些特征很好地代表了红斑鳞状疾病,对这些特征进行训练的多类SVM和RNN获得了较高的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号