首页> 外文期刊>Expert Systems with Application >Parameter optimization of continuous sputtering process based on Taguchi methods, neural networks, desirability function, and genetic-algorithms
【24h】

Parameter optimization of continuous sputtering process based on Taguchi methods, neural networks, desirability function, and genetic-algorithms

机译:基于Taguchi方法,神经网络,期望函数和遗传算法的连续溅射工艺参数优化

获取原文
获取原文并翻译 | 示例

摘要

To combat climate change, many industries have participated in the research on alternative energies. Industrial Technology Research Institute in Taiwan has developed techniques for the solar energy selective absorption film continuous sputtering process. For this extremely complicated process, plenty of parameters would influence the output quality. If parameters settings simply rely on the experience of engineers, the defect rate may increase due to instability. A more reliable approach is desirable to optimize the condition of manufacturing process parameters, thus improving the quality. The present study applies a systematic procedure for the parameter optimization of the absorption film continuous sputtering process. First, possible variables are determined based on collected data and engineering knowledge. Second, Taguchi methods are utilized to search for the significant factors and the optimal level combination of parameters. Finally, the integration of back-propagation neural network, desirability function, and genetic algorithms is used to obtain the optimal parameters setting. According to the experiment results, the performance of the integrated procedure is better than that of Taguchi methods and traditional approach. Furthermore, if applying the integrated method, the saving energy would achieve 9770.53 kiloliter of oil equivalent (kLOE) per year, which is 11.2 times the saving kLOE of the traditional paint process.
机译:为了应对气候变化,许多行业都参与了替代能源的研究。台湾工业技术研究院已开发出用于太阳能选择性吸收膜连续溅射工艺的技术。对于这个极其复杂的过程,很多参数都会影响输出质量。如果参数设置仅依靠工程师的经验,则由于不稳定,缺陷率可能会增加。需要一种更可靠的方法来优化制造工艺参数的条件,从而提高质量。本研究为吸收膜连续溅射工艺的参数优化应用了系统的程序。首先,根据收集的数据和工程知识确定可能的变量。其次,使用田口方法搜索重要因素和参数的最佳水平组合。最后,使用反向传播神经网络,期望函数和遗传算法的集成来获得最佳参数设置。根据实验结果,该综合程序的性能优于田口方法和传统方法。此外,如果采用综合方法,每年可节省的能源达到9770.53千桶油当量(kLOE),这是传统涂料工艺节省kLOE的11.2倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号