首页> 外文期刊>Expert systems with applications >A novel design of wafer yield model for semiconductor using a GMDH polynomial and principal component analysis
【24h】

A novel design of wafer yield model for semiconductor using a GMDH polynomial and principal component analysis

机译:基于GMDH多项式和主成分分析的半导体晶片成品率模型的新设计。

获取原文
获取原文并翻译 | 示例

摘要

According to previous studies, the Poisson model and negative binomial model could not accurately estimate the wafer yield. Numerous mathematical models proposed in past years were very complicated. Furthermore, other neural networks models can not provide a certain equation for managers to use. Thus, a novel design of this paper is to construct a new wafer yield model with a handy polynomial by using group method of data handling (GMDH). In addition to defect cluster index (CI_M), 12 critical electrical test parameters are also considered simultaneously. Because the number of input variables for GMDH is inadvisable to be too many, principal component analysis (PCA) is used to reduce the dimensions of 12 critical electrical test parameters to a manageable few without much loss of information. The proposed approach is validated by a case obtained in a DRAM company in Taiwan.
机译:根据以前的研究,泊松模型和负二项式模型不能准确地估计晶片产量。近年来提出的许多数学模型非常复杂。此外,其他神经网络模型无法为管理者提供一定的方程式。因此,本文的一种新颖设计是通过使用数据处理的分组方法(GMDH)构造具有方便多项式的新晶圆产量模型。除了缺陷簇索引(CI_M),还同时考虑了12个关键电气测试参数。由于不建议将GMDH的输入变量的数量过多,因此使用主成分分析(PCA)将12个关键电气测试参数的尺寸减小到可管理的数量,而又不会损失太多信息。该方法已通过台湾一家DRAM公司的案例得到验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号