首页> 美国卫生研究院文献>Journal of Applied Clinical Medical Physics >Reducing motion artifacts in 4D MR images using principal component analysis (PCA) combined with linear polynomial fitting model
【2h】

Reducing motion artifacts in 4D MR images using principal component analysis (PCA) combined with linear polynomial fitting model

机译:使用主成分分析(PCA)与线性多项式拟合模型相结合来减少4D MR图像中的运动伪像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We have previously developed a retrospective 4D‐MRI technique using body area as the respiratory surrogate, but generally, the reconstructed 4D MR images suffer from severe or mild artifacts mainly caused by irregular motion during image acquisition. Those image artifacts may potentially affect the accuracy of tumor target delineation or the shape representation of surrounding nontarget tissues and organs. So the purpose of this study is to propose an approach employing principal component analysis (PCA), combined with a linear polynomial fitting model, to remodel the displacement vector fields (DVFs) obtained from deformable image registration (DIR), with the main goal of reducing the motion artifacts in 4D MR images. Seven patients with hepatocellular carcinoma (2/7) or liver metastases (5/7) in the liver, as well as a patient with non‐small cell lung cancer (NSCLC), were enrolled in an IRB‐approved prospective study. Both CT and MR simulations were performed for each patient for treatment planning. Multiple‐slice, multiple‐phase, cine‐MRI images were acquired in the axial plane for 4D‐MRI reconstruction. Single‐slice 2D cine‐MR images were acquired across the center of the tumor in axial, coronal, and sagittal planes. For a 4D MR image dataset, the DVFs in three orthogonal direction (inferior–superior (SI), anterior–posterior (AP), and medial–lateral (ML)) relative to a specific reference phase were calculated using an in‐house DIR algorithm. The DVFs were preprocessed in three temporal and spatial dimensions using a polynomial fitting model, with the goal of correcting the potential registration errors introduced by three‐dimensional DIR. Then PCA was used to decompose each fitted DVF into a linear combination of three principal motion bases whose spanned subspaces combined with their projections had been validated to be sufficient to represent the regular respiratory motion. By wrapping the reference MR image using the remodeled DVFs, ‘synthetic’ MR images with reduced motion artifacts were generated at selected phase. Tumor motion trajectories derived from cine‐MRI, 4D CT, original 4D MRI, and ‘synthetic’ 4D MRI were analyzed in the SI, AP, and ML directions, respectively. Their correlation coefficient (CC) and difference (D) in motion amplitude were calculated for comparison. Of all the patients, the means and standard deviations (SDs) of CC comparing ‘synthetic’ 4D MRI and cine‐MRI were 0.98 ± 0.01, 0.98 ± 0, 01, and 0.99 ± 0.01 in SI, AP, and ML directions, respectively. The mean ± SD Ds were 0.59 ± 0.09 mm, 0.29 ± 0.10 mm, and 0.15 ± 0.05 mm in SI, AP and ML directions, respectively. The means and SDs of CC comparing ‘synthetic’ 4D MRI and 4D CT were 0.96 ± 0.01, 0.95 ± 0.01, and 0.95 ± 0.01 in SI, AP, and ML directions, respectively. The mean ± SD Ds were 0.76 ± 0.20 mm, 0.33 ± 0.14 mm, and 0.19 ± 0.07 mm in SI, AP, and ML directions, respectively. The means and SDs of CC comparing ‘synthetic’ 4D MRI and original 4D MRI were 0.98 ± 0.01, 0.98 ± 0.01, and 0.97 ± 0.01 in SI, AP, and ML directions, respectively. The mean ± SD Ds were 0.58 ± 0.10 mm, 0.30 ± 0.09 mm, and 0.17 ± 0.04 mm in SI, AP, and ML directions, respectively. In this study we have proposed an approach employing PCA combined with a linear polynomial fitting model to capture the regular respiratory motion from a 4D MR image dataset. And its potential usefulness in reducing motion artifacts and improving image quality has been demonstrated by the preliminary results in oncological patients.PACS numbers: 87.57.cp, 87.57.nj, 87.61.‐c
机译:我们以前已经开发了一种将身体区域用作呼吸替代物的回顾性4D-MRI技术,但是通常,重建的4D MR图像会出现严重或轻度的伪影,主要是由于图像采集期间的不规则运动引起的。这些图像伪影可能潜在地影响肿瘤靶标描绘的准确性或周围的非靶标组织和器官的形状表示。因此,本研究的目的是提出一种采用主成分分析(PCA)与线性多项式拟合模型相结合的方法,以重塑从可变形图像配准(DIR)获得的位移矢量场(DVF),其主要目标是减少4D MR图像中的运动伪像。一项IRB批准的前瞻性研究纳入了7例肝细胞癌(2/7)或肝转移(5/7)的患者以及非小细胞肺癌(NSCLC)的患者。针对每个患者进行了CT和MR模拟,以制定治疗计划。在轴向平面中获取了多切片,多阶段的cine-MRI图像,以进行4D-MRI重建。在轴向,冠状面和矢状面的整个肿瘤中心获取单片二维MR图像。对于4D MR图像数据集,使用内部DIR计算相对于特定参考相位的三个正交方向(上下(SI),前后(AP)和内侧-外侧(ML))的DVF算法。 DVF使用多项式拟合模型在三个时间和空间维度上进行了预处理,目的是纠正三维DIR引入的潜在配准误差。然后使用PCA将每个拟合的DVF分解为三个主要运动基础的线性组合,其三个跨度的子空间及其投影已被验证足以代表常规的呼吸运动。通过使用重构的DVF包装参考MR图像,可以在选定阶段生成运动伪像减少的“合成” MR图像。从cine-MRI,4D CT,原始4D MRI和“合成” 4D MRI得出的肿瘤运动轨迹分别在SI,AP和ML方向上进行了分析。计算它们的相关系数(CC)和运动幅度差异(D)进行比较。在所有患者中,比较``合成''4D MRI和cine-MRI的CC的均值和标准差(SD)在SI,AP和ML方向分别为0.98±0.01、0.98±0、01和0.99±0.01。 。在SI,AP和ML方向上的平均SD Ds分别为0.59±0.09mm,0.29±0.10mm和0.15±0.05mm。 CC对比“合成” 4D MRI和4D CT的均值和SD在SI,AP和ML方向分别为0.96±0.01、0.95±0.01和0.95±0.01。在SI,AP和ML方向上的平均SD Ds分别为0.76±0.20mm,0.33±0.14mm和0.19±0.07mm。比较“合成” 4D MRI和原始4D MRI的CC的均值和SD在SI,AP和ML方向分别为0.98±0.01、0.98±0.01和0.97±0.01。在SI,AP和ML方向上的平均SD Ds分别为0.58±0.10mm,0.30±0.09mm和0.17±0.04mm。在这项研究中,我们提出了一种使用PCA与线性多项式拟合模型相结合的方法来从4D MR图像数据集中捕获常规呼吸运动的方法。肿瘤患者的初步结果证明了其在减少运动伪影和改善图像质量方面的潜在用途.PACS编号:87.57.cp,87.57.nj,87.61.-c

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号