首页> 外文期刊>Expert Systems with Application >Positive vectors clustering using inverted Dirichlet finite mixture models
【24h】

Positive vectors clustering using inverted Dirichlet finite mixture models

机译:使用反向Dirichlet有限混合模型的正向量聚类

获取原文
获取原文并翻译 | 示例

摘要

In this work we present an unsupervised algorithm for learning finite mixture models from multivariate positive data. Indeed, this kind of data appears naturally in many applications, yet it has not been adequately addressed in the past. This mixture model is based on the inverted Dirichlet distribution, which offers a good representation and modeling of positive non-Gaussian data. The proposed approach for estimating the parameters of an inverted Dirichlet mixture is based on the maximum likelihood (ML) using Newton Raphson method. We also develop an approach, based on the minimum message length (MML) criterion, to select the optimal number of clusters to represent the data using such a mixture. Experimental results are presented using artificial histograms and real data sets. The challenging problem of software modules classification is investigated within the proposed statistical framework, also.
机译:在这项工作中,我们提出了一种用于从多元正数据中学习有限混合模型的无监督算法。的确,这类数据在许多应用程序中自然出现,但过去并没有得到适当解决。该混合模型基于反向Dirichlet分布,它可以很好地表示和建模正非高斯数据。所提出的估计倒狄利克雷特混合参数的方法是基于牛顿拉夫森方法的最大似然(ML)。我们还开发了一种基于最小消息长度(MML)准则的方法,用于选择使用这种混合来表示数据的最佳簇数。使用人工直方图和真实数据集展示了实验结果。在提出的统计框架内,还研究了软件模块分类的挑战性问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号