首页> 外文期刊>Expert Systems with Application >Emotion detection in suicide notes
【24h】

Emotion detection in suicide notes

机译:自杀笔记中的情绪检测

获取原文
获取原文并翻译 | 示例

摘要

The success of suicide prevention, a major public health concern worldwide, hinges on adequate suicide risk assessment. Online platforms are increasingly used for expressing suicidal thoughts, but manual monitoring is unfeasible given the information overload experts are confronted with. We investigate whether the recent advances in natural language processing, and more specifically in sentiment mining, can be used to accurately pinpoint 15 different emotions, which might be indicative of suicidal behavior.A system for automatic emotion detection was built using binary support vector machine classifiers. We hypothesized that lexical and semantic features could be an adequate way to represent the data, as emotions seemed to be lexicalized consistently. The optimal feature combination for each of the different emotions was determined using bootstrap resampling. Spelling correction was applied to the input data, in order to reduce lexical variation.Classification performance varied between emotions, with scores up to 68.86% F-score. F-scores above 40% were achieved for six of the seven most frequent emotions: thankfulness, guilt, love, information, hopelessness and instructions. The most salient features are trigram and lemma bags-of-words and subjectivity clues. Spelling correction had a slightly positive effect on classification performance.We showed that fine-grained automatic emotion detection benefits from classifier optimization and a combined lexico-semantic feature representation. The modest performance improvements obtained through spelling correction might indicate the robustness of the system to noisy input text. We conclude that natural language processing techniques have future application potential for suicide prevention.
机译:预防自杀的成功是全球范围内主要的公共卫生问题,这取决于充分的自杀风险评估。在线平台越来越多地用于表达自杀念头,但是鉴于专家们面对的信息过多,手动监控是不可行的。我们调查了自然语言处理(特别是情感挖掘)方面的最新进展是否可用于准确查明15种不同的情绪,这可能表明存在自杀行为。使用二进制支持向量机分类器构建了一种自动情绪检测系统。我们假设词汇和语义特征可能是表示数据的适当方法,因为情感似乎一直被词汇化。使用引导程序重采样确定每种不同情绪的最佳特征组合。为了减少词汇变化,对输入数据进行了拼写校正。分类表现因情感而异,得分高达68.86%。七种最常见的情感中有六种的F分数达到40%以上:感恩,内,、爱,信息,绝望和指示。最突出的特征是三字组和引理词袋以及主观线索。拼写校正对分类性能有轻微的积极影响。我们表明,细化自动情感检测得益于分类器优化和组合的词汇语义特征表示。通过拼写校正获得的适度性能改进可能表明该系统对嘈杂的输入文本具有鲁棒性。我们得出结论,自然语言处理技术在预防自杀方面具有未来的应用潜力。

著录项

  • 来源
    《Expert Systems with Application》 |2013年第16期|6351-6358|共8页
  • 作者

    Bart Desmet; Veronique Hoste;

  • 作者单位

    LT3 Language and Translation Technology Team, University College Ghent, Groot-Brittannieelaan 45, 9000 Ghent, Belgium,Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281 (S9), 9000 Ghent, Belgium;

    LT3 Language and Translation Technology Team, University College Ghent, Groot-Brittannieelaan 45, 9000 Ghent, Belgium,Department of Linguistics, Ghent University, Blandijnberg 2, 9000 Ghent, Belgium;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Natural language processing; Suicide; Emotion;

    机译:自然语言处理;自杀;情感;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号