首页> 外文期刊>Expert Systems with Application >An adaptive ensemble classifier for mining concept drifting data streams
【24h】

An adaptive ensemble classifier for mining concept drifting data streams

机译:用于挖掘概念漂移数据流的自适应集成分类器

获取原文
获取原文并翻译 | 示例

摘要

It is challenging to use traditional data mining techniques to deal with real-time data stream classifications. Existing mining classifiers need to be updated frequently to adapt to the changes in data streams. To address this issue, in this paper we propose an adaptive ensemble approach for classification and novel class detection in concept drifting data streams. The proposed approach uses traditional mining classifiers and updates the ensemble model automatically so that it represents the most recent concepts in data streams. For novel class detection we consider the idea that data points belonging to the same class should be closer to each other and should be far apart from the data points belonging to other classes. If a data point is well separated from the existing data clusters, it is identified as a novel class instance. We tested the performance of this proposed stream classification model against that of existing mining algorithms using real benchmark datasets from UCI (University of California, Irvine) machine learning repository. The experimental results prove that our approach shows great flexibility and robustness in novel class detection in concept drifting and outperforms traditional classification models in challenging real-life data stream applications.
机译:使用传统的数据挖掘技术来处理实时数据流分类具有挑战性。现有采矿分类器需要经常更新以适应数据流的变化。为了解决这个问题,在本文中,我们提出了一种用于概念漂移数据流中的分类和新颖类别检测的自适应集成方法。所提出的方法使用传统的挖掘分类器并自动更新集成模型,从而代表数据流中的最新概念。对于新颖的类别检测,我们考虑这样的想法,即属于同一类别的数据点应彼此靠近,并且应与属于其他类别的数据点相距较远。如果一个数据点与现有数据集群很好地分离,则将其标识为一个新颖的类实例。我们使用来自UCI(加利福尼亚大学欧文分校)机器学习存储库的真实基准数据集,针对现有的挖掘算法测试了该提议的流分类模型的性能。实验结果证明,我们的方法在概念漂移中的新颖类检测中显示出极大的灵活性和鲁棒性,并且在具有挑战性的现实数据流应用中优于传统分类模型。

著录项

  • 来源
    《Expert Systems with Application》 |2013年第15期|5895-5906|共12页
  • 作者单位

    Computational Intelligence Group, Department of Computer Science and Digital Technology, Northumbria University, Newcastle upon Tyne, UK;

    Computational Intelligence Group, Department of Computer Science and Digital Technology, Northumbria University, Newcastle upon Tyne, UK;

    Computational Intelligence Group, Department of Computer Science and Digital Technology, Northumbria University, Newcastle upon Tyne, UK;

    Department of Computer Science & Engineering, United International University, Bangladesh;

    Computational Intelligence Group, Department of Computer Science and Digital Technology, Northumbria University, Newcastle upon Tyne, UK;

    Computational Intelligence Group, Department of Computer Science and Digital Technology, Northumbria University, Newcastle upon Tyne, UK;

    Artificial Intelligence Research Group, School of Computing, Informatics and Media, University of Bradford, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Adaptive ensembles; Concept drift; Clustering; Data streams; Decision trees; Novel classes;

    机译:自适应合奏;概念漂移;集群;数据流;决策树;小说课;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号