首页> 外文期刊>Expert Systems with Application >A novel hybrid fusion algorithm to bridge the period of GPS outages using low-cost INS
【24h】

A novel hybrid fusion algorithm to bridge the period of GPS outages using low-cost INS

机译:一种新型的融合融合算法,使用低成本INS弥合GPS中断的时间

获取原文
获取原文并翻译 | 示例

摘要

Land Vehicle Navigation (LVN) mostly relies on integrated system consisting of Inertial Navigation System (INS) and Global Positioning System (GPS). The combined system provides continuous and accurate navigation solution when compared to standalone INS or GPS. Different fusion methodology such as those based on Kalman filtering and particle filtering has been proposed that estimates and models the INS error during the GPS signal availability. In the case of outages, the developed model provides an INS error estimates, thereby improving its accuracy. However, these fusion approaches possess several inadequacies related to sensor error model, immunity to noise and computational load. Alternatively, Neural Network (NN) based approaches has been proposed. In the case of low-cost INS, the NN suffers from poor generalization capability due to the presence of high amount of noises. The paper thus introduces a novel and hybrid fusion methodology utilizing Dempster-Shafer (DS) theory augmented by Support Vector Machines (SVM), known as DS-SVM. The INS and GPS data fusion is carried using DS fusion whereas SVM models the INS error. During GPS availability, DS provides accurate solution; whereas during outages, the trained SVM model corrects the INS error thereby improving the positioning accuracy. The proposed methodology is evaluated against the existing Artificial Neural Network (ANN) and the Random Forest Regression (RFR) methodology. A total of 20-87% improvement in the positional accuracy was found against ANN and RFR.
机译:陆地车辆导航(LVN)主要依靠由惯性导航系统(INS)和全球定位系统(GPS)组成的集成系统。与独立INS或GPS相比,该组合系统可提供连续且准确的导航解决方案。已经提出了诸如基于卡尔曼滤波和粒子滤波的那些融合方法,其在GPS信号可用性期间估计和建模了INS误差。在出现故障的情况下,开发的模型可以提供INS误差估计,从而提高其准确性。但是,这些融合方法在传感器误差模型,抗噪声能力和计算负荷方面存在一些不足之处。可替代地,已经提出了基于神经网络(NN)的方法。在低成本INS的情况下,由于存在大量噪声,NN的泛化能力很差。因此,本文介绍了一种新颖的混合融合方法,该方法利用了由支持向量机(SVM)增强的Dempster-Shafer(DS)理论,即DS-SVM。 INS和GPS数据融合使用DS融合进行,而SVM对INS误差进行建模。在GPS可用期间,DS可提供准确的解决方案;而在停电期间,训练有素的SVM模型可以纠正INS错误,从而提高定位精度。根据现有的人工神经网络(ANN)和随机森林回归(RFR)方法对提出的方法进行了评估。与ANN和RFR相比,位置精度总共提高了20-87%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号