首页> 外文期刊>Neurocomputing >A novel hybrid approach utilizing principal component regression and random forest regression to bridge the period of GPS outages
【24h】

A novel hybrid approach utilizing principal component regression and random forest regression to bridge the period of GPS outages

机译:一种利用主成分回归和随机森林回归来弥补GPS中断时间的新型混合方法

获取原文
获取原文并翻译 | 示例

摘要

Global Positioning System (GPS) and Inertial Navigation System (INS) are two salient technologies delivering a vehicle's position, velocity and attitude parameters for navigation. The standalone GPS undergoes signal outages (in forest area) and multipath effects (in urban areas), whereas the standalone INS solution accuracy deteriorates with time. To overcome the limitations of standalone GPS and INS, an integrated INS/GPS system is required for continuous, accurate, and reliable navigation solution. This paper proposes a hybrid method of Principal Component Regression (PCR) and Random Forest Regression (RFR) for INS and GPS data fusion.
机译:全球定位系统(GPS)和惯性导航系统(INS)是两种突出技术,可为导航提供车辆的位置,速度和姿态参数。独立的GPS会遭受信号中断(在森林地区)和多径效应(在城市地区),而独立的INS解决方案的精度会随着时间而下降。为了克服独立GPS和INS的局限性,需要集成的INS / GPS系统来提供连续,准确和可靠的导航解决方案。本文提出了一种用于INS和GPS数据融合的主成分回归(PCR)和随机森林回归(RFR)的混合方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号