首页> 外文OA文献 >Canopy height estimation in French Guiana with LiDAR ICESat/GLAS data using principal component analysis and random forest regressions
【2h】

Canopy height estimation in French Guiana with LiDAR ICESat/GLAS data using principal component analysis and random forest regressions

机译:使用主成分分析和随机森林回归分析的LiDAR ICESat / GLAS数据在法属圭亚那进行冠层高度估算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Estimating forest canopy height from large-footprint satellite LiDAR waveforms is challenging given the complex interaction between LiDAR waveforms, terrain, and vegetation, especially in dense tropical and equatorial forests. In this study, canopy height in French Guiana was estimated using multiple linear regression models and the Random Forest technique (RF). This analysis was either based on LiDAR waveform metrics extracted from the GLAS (Geoscience Laser Altimeter System) spaceborne LiDAR data and terrain information derived from the SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model) or on Principal Component Analysis (PCA) of GLAS waveforms. Results show that the best statistical model for estimating forest height based on waveform metrics and digital elevation data is a linear regression of waveform extent, trailing edge extent, and terrain index (RMSE of 3.7 m). For the PCA based models, better canopy height estimation results were observed using a regression model that incorporated both the first 13 principal components (PCs) and the waveform extent (RMSE = 3.8 m). Random Forest regressions revealed that the best configuration for canopy height estimation used all the following metrics: waveform extent, leading edge, trailing edge, and terrain index (RMSE = 3.4 m). Waveform extent was the variable that best explained canopy height, with an importance factor almost three times higher than those for the other three metrics (leading edge, trailing edge, and terrain index). Furthermore, the Random Forest regression incorporating the first 13 PCs and the waveform extent had a slightly-improved canopy height estimation in comparison to the linear model, with an RMSE of 3.6 m. In conclusion, multiple linear regressions and RF regressions provided canopy height estimations with similar precision using either LiDAR metrics or PCs. However, a regression model (linear regression or RF) based on the PCA of waveform samples with waveform extent information is an interesting alternative for canopy height estimation as it does not require several metrics that are difficult to derive from GLAS waveforms in dense forests, such as those in French Guiana. (Résumé d'auteur)
机译:考虑到LiDAR波形,地形和植被之间的复杂相互作用,尤其是在茂密的热带和赤道森林中,从大足迹的卫星LiDAR波形估计森林冠层高度的挑战具​​有挑战性。在这项研究中,使用多个线性回归模型和随机森林技术(RF)估算了法属圭亚那的树冠高度。该分析基于从GLAS(地球科学激光测高仪系统)的星载LiDAR数据中提取的LiDAR波形指标以及从SRTM(航天飞机雷达地形任务)DEM(数字高程模型)获得的地形信息,或者基于以下要素的主成分分析(PCA): GLAS波形。结果表明,基于波形度量和数字高程数据估算森林高度的最佳统计模型是波形范围,后缘范围和地形指数(RMSE为3.7 m)的线性回归。对于基于PCA的模型,使用包含前13个主成分(PC)和波形范围(RMSE = 3.8 m)的回归模型,可以观察到更好的冠层高度估计结果。随机森林回归显示,树冠高度估计的最佳配置使用了以下所有指标:波形范围,前缘,后缘和地形指数(RMSE = 3.4 m)。波形范围​​是最能解释冠层高度的变量,其重要性因子几乎比其他三个指标(前沿,后沿和地形指数)高三倍。此外,与线性模型相比,结合了前13个PC和波形范围的随机森林回归的冠层高度估计略有改善,RMSE为3.6 m。总之,使用LiDAR度量标准或PC,多重线性回归和RF回归以相似的精度提供了树冠高度估计。但是,基于波形样本的PCA和波形范围信息的回归模型(线性回归或RF)是树冠高度估计的有趣替代方法,因为它不需要几个很难从茂密森林中的GLAS波形中得出的指标,例如就像法属圭亚那的那些。 (Résuméd'auteur)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号