首页> 外文期刊>Expert Systems with Application >Chinese comments sentiment classification based on word2vec and SVMperf
【24h】

Chinese comments sentiment classification based on word2vec and SVMperf

机译:基于word2vec和SVMperf的中文评论情感分类。

获取原文
获取原文并翻译 | 示例

摘要

Since the booming development of e-commerce in the last decade, the researchers have begun to pay more attention to extract the valuable information from consumers comments. Sentiment classification, which focuses on classify the comments into positive class and negative class according to the polarity of sentiment, is one of the studies. Machine learning-based method for sentiment classification becomes mainstream due to its outstanding performance. Most of the existing researches are centered on the extraction of lexical features and syntactic features, while the semantic relationships between words are ignored. In this paper, in order to get the semantic features, we propoie a method for sentiment classification based on word2vec and SVMperf. Our research consists of two parts of work. First of all, we use word2vec to cluster the similar features for purpose of showing the capability of word2vec to capture the semantic features in selected domain and Chinese language. And then, we train and classify the comment texts using word2vec again and SVMperf. In the process, the lexicon-based and part-of-speech-based feature selection methods are respectively adopted to generate the training file. We conduct the experiments on the data set of Chinese comments on clothing products. The experimental results show the superior performance of our method in sentiment classification. (C) 2014 Elsevier Ltd. All rights reserved.
机译:自从最近十年电子商务蓬勃发展以来,研究人员开始更加关注从消费者评论中提取有价值的信息。情感分类是研究之一,其重点是根据情感的极性将评论分为积极类和消极类。基于机器学习的情感分类方法由于其出色的性能而成为主流。现有的研究大多集中在词汇特征和句法特征的提取上,而单词之间的语义关系却被忽略。为了获得语义特征,我们提出了一种基于word2vec和SVMperf的情感分类方法。我们的研究包括两个部分。首先,我们使用word2vec对相似的特征进行聚类,以展示word2vec捕获所选域和中文中的语义特征的能力。然后,我们再次使用word2vec和SVMperf对注释文本进行训练和分类。在此过程中,分别采用基于词典和基于词性的特征选择方法来生成训练文件。我们对中国服装产品评论数据集进行了实验。实验结果表明,我们的方法在情感分类上具有优越的性能。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2015年第4期|1857-1863|共7页
  • 作者单位

    Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China|Hebei Univ Sci & Technol, Sch Informat Sci & Engn, Shijiazhuang 050018, Hebei, Peoples R China;

    Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China;

    Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China|Hebei Univ Sci & Technol, Sch Informat Sci & Engn, Shijiazhuang 050018, Hebei, Peoples R China;

    Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China|Hebei Univ Sci & Technol, Sch Informat Sci & Engn, Shijiazhuang 050018, Hebei, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sentiment classification; Word2vec; SVMperf; Semantic features;

    机译:情感分类Word2vec SVMperf语义特征;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号