首页> 外文期刊>Concurrency and computation: practice and experience >Hybrid node-based tensor graph convolutional network for aspect-category sentiment classification of microblog comments
【24h】

Hybrid node-based tensor graph convolutional network for aspect-category sentiment classification of microblog comments

机译:基于混合节点的张量图卷积网络,用于微博评论的貌面类别情绪分类

获取原文
获取原文并翻译 | 示例

摘要

Aspect-category sentiment classification of microblog comments aims to identify the sentiment polarity of different opinion aspects in microblog comments, which is meaningful for the analysis of public opinion. At present, most of aspect-category sentiment classification methods need much annotation data, and regard comments as independent samples, without using of the relationship between comments. This article proposes an aspect-category sentiment classification method based on tensor graph convolutional networks. First, the combination of a comment and its aspect category is regarded as a hybrid node, and the original representation of a hybrid node is encoded by the Bert model. Second, sentiment graph and semantic graph are constructed according to the semantic similarity and sentimental relevance between hybrid nodes, and they are stacked into a tensor. Then two convolution operations, including intra-graph convolution and inter-graph convolution, are performed for each layer of graph tensor. In this way, hybrid nodes can learn and merge the heterogeneous information of different graphs. Finally, under the supervision of few labeled comments, the sentiment classification can be completed based on the features of the hybrid nodes. Experimental results on two microblog datasets show that the proposed model can significantly improve the performance of sentiment classification compared with other baseline models.
机译:宽容类别的情绪分类微博评论旨在识别微博评论中不同意见方面的情感极性,这对公众舆论分析是有意义的。目前,大多数方面类别情绪分类方法需要许多注释数据,并将评论视为独立样本,而不使用评论之间的关系。本文提出了一种基于张量图卷积网络的方面类别情绪分类方法。首先,将评论及其方面类别的组合被认为是混合节点,并且混合节点的原始表示由BERT模型编码。第二,情绪图和语义图是根据混合节点之间的语义相似性和感性相关性构造的,并且它们被堆叠成张量。然后,为每层图形张量执行两个卷积操作,包括图形卷积和图形型卷积。以这种方式,混合节点可以学习和合并不同图的异构信息。最后,在少数标签评论的监督下,可以根据混合节点的特征完成情绪分类。两个微博数据集上的实验结果表明,与其他基线模型相比,所提出的模型可以显着提高情绪分类的性能。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2021年第21期|e6431.1-e6431.14|共14页
  • 作者单位

    Kunming Univ Sci & Technol Fac Informat Engn & Automat Kunming 650500 Yunnan Peoples R China|Kunming Univ Sci & Technol Yunnan Key Lab Artificial Intelligence Kunming Yunnan Peoples R China;

    Kunming Univ Sci & Technol Fac Informat Engn & Automat Kunming 650500 Yunnan Peoples R China|Kunming Univ Sci & Technol Yunnan Key Lab Artificial Intelligence Kunming Yunnan Peoples R China;

    Kunming Univ Sci & Technol Fac Informat Engn & Automat Kunming 650500 Yunnan Peoples R China|Kunming Univ Sci & Technol Yunnan Key Lab Artificial Intelligence Kunming Yunnan Peoples R China;

    Kunming Univ Sci & Technol Fac Informat Engn & Automat Kunming 650500 Yunnan Peoples R China|Kunming Univ Sci & Technol Yunnan Key Lab Artificial Intelligence Kunming Yunnan Peoples R China;

    Kunming Univ Sci & Technol Fac Informat Engn & Automat Kunming 650500 Yunnan Peoples R China|Kunming Univ Sci & Technol Yunnan Key Lab Artificial Intelligence Kunming Yunnan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    aspect-category sentiment analysis; graph convolutional network; public opinion analysis; topic model; weak supervision learning;

    机译:方面类别情绪分析;图卷积网络;舆论分析;主题模型;弱监督学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号