首页> 外文期刊>Expert Systems with Application >Robustness analysis of arbitrarily distributed data-based recommendation methods
【24h】

Robustness analysis of arbitrarily distributed data-based recommendation methods

机译:基于任意分布数据的推荐方法的稳健性分析

获取原文
获取原文并翻译 | 示例

摘要

Due to different shopping routines of people, rating preferences of many customers might be partitioned between two parties. Since two different e-companies might sell products from the same range to the identical set of customers, the type of data partition is called arbitrarily. In the case of arbitrarily distributed data, it is a challenge to produce accurate recommendations for those customers, because their ratings are split. Therefore, researchers propose methods for enabling data holders' collaboration. In this scenario, privacy becomes a deterrent barrier for collaboration, accordingly, the introduced solutions include private protocols for protecting parties' confidentiality. Although, private protocols encourage data owners to collaborate, they introduce a new drawback for partnership. Since, whole data is distributed and parties do not have full control of data, any malicious user, who knows that two parties collaborate, can easily insert shilling profiles to system by partitioning them between data holders. Parties can have trouble to find such profile injection attacks by employing existing detection methods because of they are arbitrarily distributed. Since profile injection attacks can easily performed on arbitrarily distributed data-based recommender systems, quality, and reliability of such systems decreases, and it causes angry customers. Therefore, in this paper, we try to describe aforementioned problems with arbitrarily distributed data-based recommender systems. As a first step, we analyze robustness of proposed arbitrarily distributed data-based recommendation methods against six well-known shilling attack types. Secondly, we explain why existing detection methods cannot detect malicious user profiles in distributed data. We perform experiments on a well-known movie data set, and according to our results, arbitrarily distributed data-based recommendation methods are vulnerable to shilling attacks. (C) 2015 Elsevier Ltd. All rights reserved.
机译:由于人们的购物习惯不同,许多客户的评分偏好可能会在两方之间划分。由于两个不同的电子公司可能会将相同范围的产品销售给同一组客户,因此数据分区的类型被任意称为。在任意分发数据的情况下,为这些客户提供准确的建议是一个挑战,因为他们的评分是分开的。因此,研究人员提出了实现数据持有者协作的方法。在这种情况下,隐私成为阻碍协作的障碍,因此,引入的解决方案包括用于保护当事方机密性的私有协议。尽管私有协议鼓励数据所有者进行协作,但它们为伙伴关系带来了新的缺点。由于整个数据都是分布式的,并且各方无法完全控制数据,因此任何知道两方合作的恶意用户都可以通过在数据持有者之间进行分区来轻松地将先令配置文件插入系统。由于各方是任意分布的,因此使用现有的检测方法来寻找此类轮廓注入攻击可能会很麻烦。由于概要注入攻击很容易在任意分布的基于数据的推荐系统上执行,因此此类系统的质量和可靠性下降,并且引起客户的愤怒。因此,在本文中,我们尝试描述任意分布的基于数据的推荐系统的上述问题。第一步,我们针对六种著名的先令攻击类型,分析了所提出的基于任意分布数据的推荐方法的鲁棒性。其次,我们解释了为什么现有的检测方法无法检测分布式数据中的恶意用户配置文件。我们在一个著名的电影数据集上进行实验,根据我们的结果,基于任意分布的数据的推荐方法容易受到先令攻击。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号