首页> 美国卫生研究院文献>The Journal of Chemical Physics >Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum distributed multipoles and speedup with reciprocal space methods
【2h】

Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum distributed multipoles and speedup with reciprocal space methods

机译:高斯静电模型的推广:扩展到任意角动量分布多极子以及使用倒数空间方法进行加速

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. >124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. >26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15 kcal/mol error for Coulomb and exchange, respectively. Timing results for single Coulomb energy-force calculations for (H2O)n, n=64, 128, 256, 512, and 1024, in periodic boundary conditions with PME and FFP at two different rms force tolerances are also presented. For the small and intermediate auxiliaries, PME shows faster times than FFP at both accuracies and the advantage of PME widens at higher accuracy, while for the largest auxiliary, the opposite occurs.
机译:通过当前的经验力场对生物系统进行模拟由于其缺乏准确性而存在缺陷,特别是在非键合术语的描述中。我们先前已经介绍了一种基于密度拟合的力场,称为高斯静电模型0(GEM-0)J.-P。 Piquemal等。 [J.化学物理> 124 ,104101(2006)]改进了对非键合相互作用的描述。 GEM-0依靠密度拟合方法,通过扩展以特定位点为中心的s型高斯函数中的分子的电子密度,来再现受约束的空间轨道变化(CSOV)能量分解方案的每个贡献。在本论文中,我们将库仑力和力场的交换分量扩展到任意角动量的辅助基础集。由于具有较高角动量的基函数具有方向性,因此将参考分子框架(局部框架)形式主义用于拟合的膨胀系数的旋转。在所有情况下,分子间相互作用能都是通过使用麦克默奇-戴维森(McMurchie-Davidson)的Hermite高斯函数来计算的。计算物理> 26 ,第218页(1978)]递归来计算所有必需的积分。此外,使用Hermite高斯函数可以确定每个扩展点的点多极分解。此外,还通过基于互空间的形式主义来研究计算速度问题,其中包括粒子网格Ewald(PME)和快速Fourier-Poisson(FFP)方法。水二聚体势能表面上十个固定点的冻结核(库仑和交换排斥)分子间相互作用结果,以及规范水二聚体,甲酰胺,堆积的苯和苯水二聚体的一维表面扫描,介绍。所有结果均表明与相应CSOV计算的参考贡献有合理的一致性,库仑和交换的误差分别约为0.1和0.15 kcal / mol。还给出了在PME和FFP在两个不同有效值力容限下的周期性边界条件下,对于(H2O)n,n = 64、128、256、512和1024的单个库仑能量计算的时序结果。对于中小型辅助设备,PME在两个精度上均显示出比FFP更快的时间,并且PME的优势以更高的精度扩展,而对于最大的辅助设备,则相反。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号