首页> 外文期刊>Expert Systems with Application >A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques
【24h】

A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques

机译:使用图像处理和人工智能技术的星形细胞瘤等级鉴定的非侵入性方法

获取原文
获取原文并翻译 | 示例

摘要

Brain tumor grade identification is an invasive technique and clinicians rely on biopsy and spinal tap method. The proposed method takes an effort to develop a non-invasive method for the tumor grade (Low/High) identification using magnetic resonant images. The process involves preprocessing, image segmentation, tumor isolation, feature extraction, feature selection and classification. An analysis on the performance of the segmentation techniques, feature extraction methods, automatic feature selection (SFLA) and constructed classifiers (support vector machines, learning vector quantization and Naives Bayes) is done on the basis of accuracy, efficiency and elapsed time. This analysis motivates towards the accurate determination of tumor grade from MR images instead of depending on magnetic resonant spectroscopy and biopsy. Fuzzy c-means segmentation outperformed other segmentation techniques, shape and size based textural feature promoted the demarcation of tumor grades, Naive Bayes classifier succeeded in terms of efficiency, error and elapse time when compared with SVM and LVQ The study was carried out with 200 images consisting training set (164 images) and testing set (36 images). The results revealed that the system is robust and accurate (91%), consumed less time in grade identification, an alternative for biopsy and MRS in the brain tumor grade identification diagnosis procedure. (C) 2015 Elsevier Ltd. All rights reserved.
机译:脑肿瘤等级鉴定是一种侵入性技术,临床医生依靠活检和脊柱抽头法。所提出的方法需要努力开发一种使用磁共振图像对肿瘤等级(低/高)进行识别的非侵入性方法。该过程涉及预处理,图像分割,肿瘤分离,特征提取,特征选择和分类。在准确性,效率和经过时间的基础上,对分割技术,特征提取方法,自动特征选择(SFLA)和构造的分类器(支持向量机,学习向量量化和朴素贝叶斯)的性能进行了分析。该分析的目的是从MR图像准确确定肿瘤的分级,而不是依靠磁共振波谱和活检。模糊c均值分割优于其他分割技术,基于形状和大小的纹理特征促进了肿瘤等级的划分,与SVM和LVQ相比,朴素贝叶斯分类器在效率,错误和经过时间方面均取得了成功。包括训练集(164张图像)和测试集(36张图像)。结果表明,该系统功能强大且准确(91%),在等级识别中消耗的时间更少,是脑肿瘤等级识别诊断程序中活检和MRS的替代方法。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号