首页> 外文期刊>Expert Systems with Application >A feature reduced intrusion detection system using ANN classifier
【24h】

A feature reduced intrusion detection system using ANN classifier

机译:使用ANN分类器的减少特征的入侵检测系统

获取原文
获取原文并翻译 | 示例

摘要

Rapid increase in internet and network technologies has led to considerable increase in number of attacks and intrusions. Detection and prevention of these attacks has become an important part of security. Intrusion detection system is one of the important ways to achieve high security in computer networks and used to thwart different attacks. Intrusion detection systems have curse of dimensionality which tends to increase time complexity and decrease resource utilization. As a result, it is desirable that important features of data must be analyzed by intrusion detection system to reduce dimensionality. This work proposes an intelligent system which first performs feature ranking on the basis of information gain and correlation. Feature reduction is then done by combining ranks obtained from both information gain and correlation using a novel approach to identify useful and useless features. These reduced features are then fed to a feed forward neural network for training and testing on KDD99 dataset. Pre-processing of KDD-99 dataset has been done to normalize number of instances of each class before training. The system then behaves intelligently to classify test data into attack and non-attack classes. The aim of the feature reduced system is to achieve same degree of performance as a normal system. The system is tested on five different test datasets and both individual and average results of all datasets are reported. Comparison of proposed method with and without feature reduction is done in terms of various performance metrics. Comparisons with recent and relevant approaches are also tabled. Results obtained for proposed method are really encouraging. (C) 2017 Elsevier Ltd. All rights reserved.
机译:互联网和网络技术的迅猛发展导致攻击和入侵数量大大增加。检测和预防这些攻击已成为安全性的重要组成部分。入侵检测系统是在计算机网络中实现高安全性的重要方法之一,并且可以用来阻止各种攻击。入侵检测系统具有维度诅咒,这往往会增加时间复杂度并降低资源利用率。结果,期望必须通过入侵检测系统分析数据的重要特征以减小维度。这项工作提出了一种智能系统,该系统首先基于信息增益和相关性进行特征排名。然后,通过使用一种新颖的方法来组合从信息增益和相关性两者中获得的等级,以识别有用和无用的特征,从而完成特征约简。然后将这些简化的特征馈送到前馈神经网络,以对KDD99数据集进行训练和测试。在训练之前,已经对KDD-99数据集进行了预处理,以标准化每个类的实例数。然后,系统会智能地运行,以将测试数据分类为攻击和非攻击类。精简系统的目的是实现与普通系统相同的性能。该系统在五个不同的测试数据集上进行了测试,并报告了所有数据集的单独和平均结果。根据各种性能指标,比较了有特征减少和无特征减少的建议方法。还列出了与最新方法和相关方法的比较。提出的方法获得的结果确实令人鼓舞。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号