首页> 外文期刊>Expert systems with applications >An analysis of 'A feature reduced intrusion detection system using ANN classifier' by Akashdeep et al. expert systems with applications (2017)
【24h】

An analysis of 'A feature reduced intrusion detection system using ANN classifier' by Akashdeep et al. expert systems with applications (2017)

机译:Akashdeep等人的“使用ANN分类器的特征减少入侵检测系统分析”。具有申请的专家系统(2017)

获取原文
获取原文并翻译 | 示例

摘要

This paper analyses the recently proposed article "A feature reduced intrusion detection system using ANN classifier" by Akashdeep, Ishfaq Manzoor & Neeraj Kumar, (Expert systems with Applications, 2017) which has a limitation in its experimental setup. The work of Akashdeep et.al has crafted the test dataset to attain improved accuracy. They have utilized 5 fractional test datasets for performance evaluation. The reduced list of features obtained in their work does not give the asserted performance for the original test dataset. Table 18 of the above article by Akashdeep et.al gives the performance comparison of their work with existing works which isn't appropriate as these works have different test dataset composition. Another issue with the work of Akashdeep et.al is the utilization of partial training dataset for determining the reduced list of features. Their work reduces the training dataset by random undersampling of the majority class instances and random replication of the minority class instances. The reduced list of features obtained by Akashdeep et.al comprises 25 features. This work applies the feature selection algorithm proposed by Akashdeep et.al on the original training dataset leading to a feature subset having 29 features. It has been observed experimentally that the reduced feature subset (29 features) obtained in later outperforms the former reduced feature set (25 features). This work uses the classification algorithms c4.5, Naive Bayes and Random Forest for performance comparison of these reduced feature sets. Oversampling one class may deteriorate the performance of another class. This work also evaluates random undersampling/oversampling of a specific class to design an optimal training dataset. The results show that the classification models developed using this training dataset have a better detection rate for the minority classes. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文通过Akashdeep,Ishfaq Manzoor&Neeraj Kumar分析了最近提出的“A特征缩小入侵检测系统”,(使用Ann分类器缩减了入侵检测系统)(专家系统,2017年)在其实验设置中有一个限制。 Akashdeep et.al的工作制作了测试数据集以获得提高的准确性。它们利用了5个分数测试数据集进行性能评估。减少在其工作中获得的功能列表不会给出原始测试数据集的断言性能。表18由AkashDeep et.al提供了与现有作品的性能比较,这些作品不合适,因为这些作品具有不同的测试数据集组合。 AkashDeep et.al工作的另一个问题是利用部分训练数据集来确定减少的功能列表。他们的作品通过随机缺点的大多数类实例和少数类实例的随机复制来减少训练数据集。由AkashDeep et.al获得的特征的减少列表包括25个功能。这项工作适用于AkashDeep et.al在原始训练数据集上提出的特征选择算法,导致具有29个功能的特征子集。已经通过实验观察到,在以后,在以前的特征集(25个特征)中获得的减少的特征子集(29个功能)。这项工作使用分类算法C4.5,Naive Bayes和随机林进行这些减少特征集的性能比较。过采样一类可能会恶化另一堂课的性能。这项工作还评估了一个特定类的随机欠采样/过采样来设计最佳训练数据集。结果表明,使用该训练数据集开发的分类模型对于少数群体的检测率更好。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号