首页> 外文期刊>Expert Systems with Application >A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making
【24h】

A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making

机译:一种自然语言生成方法,可支持多准则决策中多维优先敏感性分析的理解和可追溯性

获取原文
获取原文并翻译 | 示例

摘要

Multi-Criteria Decision Analysis (MCDA) enables decision makers (DM) and decision analysts (DA) to analyse and understand decision situations in a structured and formalised way. With the increasing complexity of decision support systems (DSSs), it becomes challenging for both expert and novice users to understand and interpret the model results. Natural language generation (NLG) techniques are used in various DSSs to cope with this challenge as they reduce the cognitive effort to achieve understanding of decision situations. However, NLG techniques in MCDA have so far mainly been developed for deterministic decision situations or one-dimensional sensitivity analyses. In this paper, a concept for the generation of textual explanations for a multi-dimensional preferential sensitivity analysis in MCDA is developed. The key contribution is a NLG approach that provides detailed explanations of the implications of preferential uncertainties in Multi-Attribute Value Theory (MAVT). It generates a report that assesses the influences of simultaneous or separate variations of inter-criteria and intra-criteria preferential parameters determined within the decision analysis. We explore the added value of the natural language report in an online survey. Our results show that the NLG approach is particularly beneficial for difficult interpretational tasks. (C) 2017 Elsevier Ltd. All rights reserved.
机译:多标准决策分析(MCDA)使决策者(DM)和决策分析师(DA)能够以结构化和形式化的方式分析和理解决策情况。随着决策支持系统(DSS)复杂性的提高,对于专家和新手用户来说,理解和解释模型结果都将面临挑战。在各种DSS中使用自然语言生成(NLG)技术来应对这一挑战,因为它们减少了对决策情况的理解所需的认知努力。但是,到目前为止,MCDA中的NLG技术主要是为确定性决策情况或一维敏感性分析开发的。本文提出了一种在MCDA中生成多维优先敏感性分析的文本解释的概念。关键贡献在于NLG方法,它提供了对多属性价值理论(MAVT)中优先不确定性含义的详细解释。它生成一份报告,该报告评估在决策分析中确定的标准间和标准内优先参数的同时或单独变化的影响。我们通过在线调查探索自然语言报告的附加价值。我们的结果表明,NLG方法对困难的解释任务特别有利。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号