首页> 外文期刊>Computers & geosciences >A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis
【24h】

A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis

机译:基于GIS的空间显式敏感性和不确定性分析方法用于多准则决策分析

获取原文
获取原文并翻译 | 示例

摘要

CIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster-Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in CIS. The methodology is composed of three different phases. First weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty-sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights.
机译:CIS多准则决策分析(MCDA)技术越来越多地用于滑坡敏感性地图绘制中,以预测未来灾害,土地利用规划以及灾害防范。但是,与MCDA技术相关的不确定性是不可避免的,并且模型结果对多种类型的不确定性开放。在本文中,我们提出了一种不确定性和敏感性分析的系统方法。我们访问了使用GIS-MCDA技术生成的滑坡敏感性图的不确定性。一种新的空间显式方法和Dempster-Shafer理论(DST)被用来评估与两种MCDA技术相关的不确定性,这两种技术分别是在CIS中实现的层次分析法(AHP)和有序加权平均(OWA)。该方法包括三个不同的阶段。计算第一权重以表示滑坡敏感性因素(标准)的相对重要性。接下来,使用蒙特卡罗模拟和全球敏感性分析,分析滑坡敏感性的不确定性和敏感性作为权重的函数。最后,使用滑坡清单数据库和应用DST对结果进行验证。将两种MCDA技术获得的滑坡敏感性图与已知的滑坡进行比较,表明AHP优于OWA。但是,OWA生成的滑坡敏感性图比AHP生成的地图具有更低的不确定性。结果表明,采用集成的不确定性-敏感性分析方法可以进一步提高基于GIS的MCDA的准确性,该方法将滑坡敏感性模型的不确定性分解并归因于模型的标准权重。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号