首页> 外文期刊>Expert Systems with Application >Multimodal sensor-based semantic 3D mapping for a large-scale environment
【24h】

Multimodal sensor-based semantic 3D mapping for a large-scale environment

机译:大规模环境中基于多模式传感器的语义3D映射

获取原文
获取原文并翻译 | 示例

摘要

Semantic 3D mapping is one of the most important fields in robotics, and has been used in many applications, such as robot navigation, surveillance, and virtual reality. In general, semantic 3D mapping is mainly composed of 3D reconstruction and semantic segmentation. As these technologies evolve, there has been great progress in semantic 3D mapping in recent years. Furthermore, the number of robotic applications requiring semantic information in 3D mapping to perform high-level tasks has increased, and many studies on semantic 3D mapping have been published. Existing methods use a camera for both 3D reconstruction and semantic segmentation. However, this is not suitable for large-scale environments and has the disadvantage of high computational complexity. To address this problem, we propose a multimodal sensor-based semantic 3D mapping system using a 3D Lidar combined with a camera. In this study, the odometry is obtained by high-precision global positioning system (GPS) and inertial measurement unit (IMU), and it is estimated by iterative closest point (ICP) when a GPS signal is weak. Then, we use the latest 2D convolutional neural network (CNN) for semantic segmentation. To build a semantic 3D map, we integrate the 3D map with semantic information by using coordinate transformation and Bayes' update scheme. In order to improve the semantic 3D map, we propose a 3D refinement process to correct wrongly segmented voxels and remove traces of moving vehicles in the 3D map. Through experiments on challenging sequences, we demonstrate that our method outperforms state-of-the-art methods in terms of accuracy and intersection over union (IoU). Thus, our method can be used for various applications that require semantic information in 3D map. (C) 2018 Elsevier Ltd. All rights reserved.
机译:语义3D映射是机器人技术中最重要的领域之一,并且已在许多应用程序中使用,例如机器人导航,监视和虚拟现实。通常,语义3D映射主要由3D重构和语义分割组成。随着这些技术的发展,近年来语义3D映射取得了长足的进步。此外,在3D映射中需要语义信息以执行高级任务的机器人应用程序的数量有所增加,并且已经发表了许多关于语义3D映射的研究。现有方法将相机用于3D重建和语义分割。但是,这不适用于大规模环境,并且具有计算复杂度高的缺点。为了解决这个问题,我们提出了一种结合3D激光雷达和摄像头的基于多模式传感器的语义3D映射系统。在这项研究中,里程计是通过高精度全球定位系统(GPS)和惯性测量单元(IMU)获得的,而当GPS信号较弱时,它是通过迭代最近点(ICP)估算的。然后,我们使用最新的2D卷积神经网络(CNN)进行语义分割。为了构建语义3D地图,我们通过使用坐标变换和贝叶斯更新方案将3D地图与语义信息集成在一起。为了改善语义3D地图,我们提出了3D精简过程,以纠正错误分割的体素并在3D地图中去除行驶中的车辆的痕迹。通过对具有挑战性的序列进行的实验,我们证明了我们的方法在准确性和联合交叉(IoU)方面优于最新方法。因此,我们的方法可用于需要3D地图中语义信息的各种应用程序。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号