首页> 外文期刊>Evolutionary computation >Finiteness of the Fixed Point Set for the Simple Genetic Algorithm
【24h】

Finiteness of the Fixed Point Set for the Simple Genetic Algorithm

机译:简单遗传算法的不动点集的有限性

获取原文
获取原文并翻译 | 示例

摘要

The infinite population simple genetic algorithm is a discrete dynamical system model of a genetic algorithm. It is conjectured that trajectories in the model always converge to fixed points. This paper shows that an arbitrarily small perturbation of the fitness will result in a model with a finite number of fixed points. Moreover, every sufficiently small perturbation of fimess preserves the finiteness of the fixed point set. These results allow proofs and constructions that require finiteness of the fixed point set. For example, applying the stable manifold theorem to a fixed point requires the hyperbolicity of the differential of the transition map of the genetic algorithm, which requires (among other things) that the fixed point be isolated.
机译:无限人口简单遗传算法是遗传算法的离散动力学系统模型。据推测,模型中的轨迹总是会收敛到固定点。本文表明,对适应度的任意小的扰动将导致模型具有有限数量的固定点。此外,每一个足够小的微调扰动都会保留定点集的有限性。这些结果允许需要定点集有限性的证明和构造。例如,将稳定流形定理应用于固定点需要遗传算法的转换图的微分的双曲线性,这要求(除其他事项外)固定点是孤立的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号