首页> 外文期刊>EURASIP journal on image and video processing >Static Object Detection Based on a Dual Background Model and a Finite-State Machine
【24h】

Static Object Detection Based on a Dual Background Model and a Finite-State Machine

机译:基于双重背景模型和有限状态机的静态物体检测

获取原文
获取原文并翻译 | 示例

摘要

Detecting static objects in video sequences has a high relevance in many surveillance applications, such as the detection of abandoned objects in public areas. In this paper, we present a system for the detection of static objects in crowded scenes. Based on the detection of two background models learning at different rates, pixels are classified with the help of a finite-state machine. The background is modelled by two mixtures of Gaussians with identical parameters except for the learning rate. The state machine provides the meaning for the interpretation of the results obtained from background subtraction; it can be implemented as a lookup table with negligible computational cost and it can be easily extended. Due to the definition of the states in the state machine, the system can be used either full automatically or interactively, making it extremely suitable for real-life surveillance applications. The system was successfully validated with several public datasets.
机译:在许多监视应用中,例如检测公共区域中的废弃对象,检测视频序列中的静态对象具有很高的相关性。在本文中,我们提出了一种用于在拥挤的场景中检测静态物体的系统。基于两个学习速率不同的背景模型的检测,借助有限状态机对像素进行分类。背景是由两个高斯混合的具有相同参数(学习率除外)的混合物建模的。状态机为解释从背景减法获得的结果提供了含义。可以将其实现为查找表,并且计算成本可以忽略不计,并且可以轻松扩展。由于状态机中定义了状态,因此该系统可以完全自动使用,也可以交互使用,因此非常适合于现实生活中的监视应用。该系统已通过多个公共数据集成功验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号