首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Background Prior-Based Salient Object Detection via Deep Reconstruction Residual
【24h】

Background Prior-Based Salient Object Detection via Deep Reconstruction Residual

机译:通过深度重构残差进行基于背景先验的显着目标检测

获取原文
获取原文并翻译 | 示例

摘要

Detection of salient objects from images is gaining increasing research interest in recent years as it can substantially facilitate a wide range of content-based multimedia applications. Based on the assumption that foreground salient regions are distinctive within a certain context, most conventional approaches rely on a number of hand-designed features and their distinctiveness is measured using local or global contrast. Although these approaches have been shown to be effective in dealing with simple images, their limited capability may cause difficulties when dealing with more complicated images. This paper proposes a novel framework for saliency detection by first modeling the background and then separating salient objects from the background. We develop stacked denoising autoencoders with deep learning architectures to model the background where latent patterns are explored and more powerful representations of data are learned in an unsupervised and bottom-up manner. Afterward, we formulate the separation of salient objects from the background as a problem of measuring reconstruction residuals of deep autoencoders. Comprehensive evaluations of three benchmark datasets and comparisons with nine state-of-the-art algorithms demonstrate the superiority of this paper.
机译:近年来,从图像中检测出显着物体越来越引起人们的研究兴趣,因为它可以极大地促进广泛的基于内容的多媒体应用。基于前景凸显区域在特定上下文中具有显着性这一假设,大多数常规方法都依赖于许多手工设计的特征,并使用局部或全局对比度来测量其显着性。尽管已显示这些方法在处理简单图像方面是有效的,但它们的功能有限可能会在处理更复杂的图像时引起困难。本文提出了一种显着性检测的框架,方法是先对背景建模,然后再将显着对象与背景分离。我们开发了具有深度学习架构的堆叠式去噪自动编码器,以对探索潜在模式并以无监督和自下而上的方式学习更强大的数据表示的背景进行建模。之后,我们将显着对象与背景的分离公式化为测量深度自动编码器的重构残差的问题。对三个基准数据集的综合评估以及与九种最新算法的比较证明了本文的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号