首页> 外文期刊>Environmental Science & Technology >Microbial Reduction of Crystalline Iron(Ⅲ) Oxides: Influence of Oxide Surface Area and Potential for Cell Growth
【24h】

Microbial Reduction of Crystalline Iron(Ⅲ) Oxides: Influence of Oxide Surface Area and Potential for Cell Growth

机译:结晶氧化铁(Ⅲ)的微生物还原:氧化物表面积和细胞生长潜力的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Quantitative aspects of microbial crystalline iron-(Ⅲ) oxide reduction were examined using a dissimilatory iron(Ⅲ) oxide-reducing bacterium (Shewanella alga strain BrY). The initial rate and long-term extent of reduction of a range of synthetic iron(Ⅲ) oxides were linearly correlated with oxide surface area. Oxide reduction rates reached an asymptote at cell concentrations in excess of ≈ 1 x 10~9/m~2 of oxide surface. Experiments with microbially reduced goethite that had been washed with pH 5 sodium acetate to remove adsorbed Fe(Ⅱ) suggested that formation of a Fe(Ⅱ) surface phase (adsorbed or precipitated) limited the extent of iron(Ⅲ) oxide reduction. These results demonstrated explicitly that the rate and extent of microbial iron(Ⅲ) oxide reduction is controlled by the surface area and site concentration of the solid phase. Strain BrY grew in media with synthetic goethite as the sole electron acceptor. The quantity of cells produced per micromole of goethite reduced (2.5 x 10~6) was comparable to that determined previously for growth of BrY and other dissimilatory Fe(Ⅲ)-reducing bacteria coupled to amorphous iron(Ⅲ) oxide reduction. BrY reduced a substantial fraction (8 -18%) of the crystalline iron(Ⅲ) oxide content of a variety of soil and subsurface materials, and several cultures containing these materials were transferred repeatedly with continued active Fe(Ⅲ) reduction. These findings indicate that Fe(Ⅲ)-reducing bacteria may be able to survive and produce significant quantities of Fe(Ⅱ) in anaerobic soil and subsurface environments where crystalline iron(Ⅲ) oxides (e.g., goethite) are the dominant forms of Fe-(Ⅲ) available for microbial reduction. Results suggest that the potential for cell growth and Fe(Ⅱ) generation will be determined by the iron(Ⅲ) oxide surface site concentration in the soil or sediment matrix.
机译:使用异化还原铁(Ⅲ)细菌(希瓦氏藻藻菌株BrY)检查了微生物结晶氧化铁(Ⅲ)还原的定量方面。一系列合成铁(Ⅲ)氧化物的初始还原速率和长期还原程度与氧化物表面积呈线性关系。在细胞浓度超过≈1 x 10〜9 / m〜2的氧化物表面时,氧化物的还原速率达到渐近线。用pH 5乙酸钠洗涤以去除吸附的Fe(Ⅱ)的微生物还原针铁矿的实验表明,形成Fe(Ⅱ)表面相(吸附或沉淀)限制了氧化铁(Ⅲ)的还原程度。这些结果清楚地表明,微生物氧化铁还原的速率和程度受固相表面积和位点浓度的控制。 BrY菌株在以合成针铁矿为唯一电子受体的培养基中生长。每微摩尔针铁矿还原产生的细胞数量(2.5 x 10〜6)与先前确定的BrY和其他异化Fe(Ⅲ)还原细菌与无定形氧化铁(Ⅲ)还原的细菌生长数量相当。 BrY降低了各种土壤和地下物质中结晶铁(Ⅲ)的含量的相当一部分(8 -18%),并且反复重复转移含有这些物质的几种培养物,并持续进行有效的Fe(Ⅲ)还原。这些发现表明,还原性Fe(Ⅲ)细菌能够在厌氧的土壤和地下环境中存活并产生大量的Fe(Ⅱ),其中结晶铁(Ⅲ)氧化物(例如针铁矿)是Fe-的主要形式。 (Ⅲ)可用于微生物还原。结果表明,细胞生长和Fe(Ⅱ)生成的潜力将由土壤或沉积物基质中的氧化铁(Ⅲ)表面位点浓度决定。

著录项

  • 来源
    《Environmental Science & Technology》 |1996年第5期|p.1618-1628|共11页
  • 作者

    ERIC E. RODEN; JOHN M. ZACHARA;

  • 作者单位

    Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, Alabama 35487-0344;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号